Page 7 of 9
ACS Catalysis
(1) For selected examples: (a) Iwasawa, N.; Matsuo, T.; Iwamoto,
Alkynylation of Cyclopropanols. Org. Lett. 2015, 17, 3854ꢀ3856. (m)
Gyanchander, E.; Ydhyam, S.; Tumma, N.; Belmore, K.; Cha, J. K.
Mechanism of Ru(II)ꢀCatalyzed Rearrangements of Allenylꢀ and
Alkynylcyclopropanols to Cyclopentenones. Org. Lett. 2016, 18,
6098ꢀ6101. (n) Kananovich, D. G.; Konik, Y. A.; Zubrytski, D. M.;
Jӓrving, I.; Lopp, M. Simple Access to βꢀTrifluoromethylꢀSubstituted
Ketones via CopperꢀCatalyzed RingꢀOpening TrifluoroMethylation of
Substituted Cyclopropanols. Chem. Commun. 2015, 51, 8349ꢀ8352.
(o) Jia, K.; Zhang, F.; Huang, H.; Chen, Y. VisibleꢀLightꢀInduced
Alkoxyl Radical Generation Enables Selective C(sp3)–C(sp3) Bond
Cleavage and Functionalizations. J. Am. Chem. Soc. 2016, 138, 1514ꢀ
1517. (p) Zhang, H.; Wu, G.; Yi, H.; Sun, T.; Wang, B.; Zhang, Y.;
Dong, G.; Wang, J. Copper(I)ꢀCatalyzed Chemoselective Coupling of
Cyclopropanols with Diazoesters: RingꢀOpening C−C Bond Forꢀ
mations. Angew. Chem. Int. Ed. 2017, 56, 3945ꢀ3950. (q) Zhou, X.;
Yu, S.; Kong, L.; Li, X. Rhodium(III)ꢀCatalyzed Coupling of Arenes
with Cyclopropanols via C–H Activation and Ring Opening. ACS
Catal., 2016, 6, 647ꢀ651.
M.; Ikeno, T. Rearrangement of 1ꢀ(1ꢀAlkynyl)cyclopropanols to 2ꢀ
Cyclopentenones via Their Hexacarbonyldicobalt Complexes. A New
Use of Alkyne−Co2(CO)6 Complexes in Organic Synthesis. J. Am.
Chem. Soc., 1998, 120, 3903ꢀ3914. (b) Markham, J. P.; Staben, S. T.;
Toste, F. D. Gold(I)ꢀCatalyzed Ring Expansion of Cyclopropanols
and Cyclobutanols. J. Am. Chem. Soc., 2005, 127, 9708ꢀ9709. (c)
Trost, B. M.; Xie, J.; Maulide, N. Stereoselective, DualꢀMode Rutheꢀ
niumꢀCatalyzed Ring Expansion of Alkynylcyclopropanols. J. Am.
Chem. Soc. 2008, 130, 17258ꢀ17259. (d) Kleinbeck, F.; Toste, F. D.
Gold(I)ꢀCatalyzed Enantioselective Ring Expansion of Allenylcycloꢀ
propanols. J. Am. Chem. Soc. 2009, 131, 9178ꢀ9719. (e) Shu, X.ꢀZ.;
Zhang, M.; He, Y.; Frei, H.; Toste, F. D. Dual Visible Light Photoreꢀ
dox and GoldꢀCatalyzed Arylative Ring Expansion. J. Am. Chem.
Soc., 2014, 136, 5844ꢀ5847. (f) Sethofer, S. G.; Staben, S. T.; Hung,
O. Y.; Toste, F. D. Au(I)ꢀCatalyzed Ring Expanding
Cycloisomerizations: Total Synthesis of Ventricosene. Org. Lett.
2008, 10, 4315ꢀ4318. (g) Tumma, N.; Gyanchander, E.; Cha, J. K.
CuꢀMediated Rearrangements of Allenylcyclopropanols to Cyclopenꢀ
tenones: Two Divergent Pathways. J. Org. Chem. 2017, 82, 4379ꢀ
4385. (h) Jiao, L.; Yuan, C.; Yu, Z.ꢀX. Tandem Rh(I)ꢀCatalyzed
[(5+2)+1] Cycloaddition/Aldol Reaction for the Construction of Lineꢀ
ar Triquinane Skeleton:ꢁ Total Syntheses of (±)ꢀHirsutene and (±)ꢀ1ꢀ
Desoxyhypnophilin. J. Am. Chem. Soc., 2008, 130, 4421ꢀ4430. (i)
Kingsbury, J. S.; Corey, E. J. Enantioselective Total Synthesis of
Isoedunol and βꢀAraneosene Featuring Unconventional Strategy and
Methodology. J. Am. Chem. Soc., 2005, 127, 13813ꢀ13815. (j) Kim,
K.; Cha, J. K. Total Synthesis of Cyathin A3 and Cyathin B2 Angew.
Chem., Int. Ed. 2009, 48, 5334ꢀ5336.
(2) For reviews, see: (a) Gibson, D. H.; DePuy, C. H. Cyclopropaꢀ
nol chemistry. Chem. Rev., 1974, 74, 605ꢀ623. (b) Kulinkovich, O. G.
The Chemistry of Cyclopropanols. Chem. Rev., 2003, 103, 2597ꢀ
2632. (c) Mack, D. J.; Njardarson, J. T. Recent Advances in the Metꢀ
alꢀCatalyzed Ring Expansions of Threeꢀ and FourꢀMembered Rings.
ACS Catal., 2013, 3, 272ꢀ286. (d) Nikolaev, A.; Orellana, A. Transiꢀ
tionꢀMetalꢀCatalyzed C–C and C–X BondꢀForming Reactions Using
Cyclopropanols. Synthesis 2016, 48, 1741ꢀ1768. (e) Fumagalli, G.;
Stanton, S.; Bower, J. F. Recent Methodologies That Exploit C–C
SingleꢀBond Cleavage of Strained Ring Systems by Transition Metal
Complexes. Chem. Rev., 2017, 117, 9404ꢀ9432. (f) Ebner, C.; Carꢀ
reira, E. M. Cyclopropanation Strategies in Recent Total Syntheses.
Chem. Rev., 2017, 117, 11651ꢀ11679.
(3) For selected examples: (a) Aoki, S.; Fujimura, T.; Nakamura,
E.; Kuwajima, I. PalladiumꢀCatalyzed Arylation of Siloxycycloproꢀ
panes with Aryl Triflates. Carbon Chain Elongation via Catalytic
CarbonꢀCarbon Bond Cleavage. J. Am. Chem. Soc. 1988, 110, 3296ꢀ
3298. (b) Fujimura, T.; Aoki, S.; Nakamura, E. Synthesis of 1,4ꢀKeto
Esters and 1,4ꢀDiketones via PalladiumꢀCatalyzed Acylation of Siꢀ
loxycyclopropanes. Synthetic and Mechanistic Studies. J. Org. Chem.
1991, 56, 2809ꢀ2821. (c) Aoki, S.; Nakamura, E. Synthesis of 1,4ꢀ
Dicarbonyl Compounds by PalladiumꢀCatalyzed Carbonylative Aryꢀ
lation of Siloxycyclopropanes. Synlett 1990, 741ꢀ742. (d) Kang S.ꢀK.;
Yamaguchi, T.; Ho, P.ꢀS.; Kim, W.ꢀY.; Yoon, S.ꢀK. Palladiumꢀ
Catalyzed Coupling and Carbonylative Coupling of Silyloxy Comꢀ
pounds with Hypervalent Iodonium Salts. Tetrahedron Lett. 1997, 38,
1947ꢀ1950. (e) Rosa, D.; Orellana, A. PalladiumꢀCatalyzed Crossꢀ
Coupling of Cyclopropanols with Aryl Halides Under Mild Condiꢀ
tions. Org. Lett. 2011, 13, 110ꢀ113. (f) Rosa, D.; Orellana, A. Syntheꢀ
sis of αꢀindanones via Intramolecular Direct Arylation with Cycloꢀ
propanolꢀDerived Homoenolates. Chem. Commun. 2012, 48, 1922ꢀ
1924. (g) Parida, B. B.; Das, P. P.; Niocel, M.; Cha, J. K. CꢀAcylation
of Cyclopropanols: Preparation of Functionalized 1,4ꢀDiketones. Org.
Lett. 2013, 15, 1780ꢀ1783. (h) Cheng, K.; Walsh, P. J. Arylation of
Aldehyde Homoenolates with Aryl Bromides. Org. Lett. 2013, 15,
2298ꢀ2301. (i) Das, P. P.; Belmore, K.; Cha, J. K. SN2’ Alkylation of
Cyclopropanols via Homoenolates. Angew. Chem., Int. Ed. 2012, 51,
9517ꢀ9520. (j) Rao, N. N.; Parida, B. B.; Cha, J. K. CrossꢀCoupling of
Cyclopropanols: Concise Syntheses of Indolizidine 223AB and Conꢀ
geners. Org. Lett. 2014, 16, 6208ꢀ6211. (k) Rao, N. N.; Cha, J. K.
Concise Synthesis of Alkaloid (−)ꢀ205B. J. Am. Chem. Soc. 2015,
137, 2243ꢀ2246. (l) Murali, R. V. N. S.; Rao, N. N.; Cha, J. K. Cꢀ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(4) (a) Jiao, J.; Nguyen, L. X.; Patterson, D. R.; Flowers, R. A II.
An Efficient and General Approach to βꢀFunctionalized Ketones.
Org. Lett. 2007, 9, 1323ꢀ1326. (b) Zhao, H.; Fan, X.; Yu, J.; Zhu, C.
SilverꢀCatalyzed RingꢀOpening Strategy for the Synthesis of βꢀ and γꢀ
Fluorinated Ketones. J. Am. Chem. Soc. 2015, 137, 3490ꢀ3493. (c)
Bloom, S.; Bume, D. D.; Pitts, C. R.; Lectka, T. SiteꢀSelective Apꢀ
proach to βꢀFluorination: Photocatalyzed Ring Opening of Cycloproꢀ
panols. Chem. - Eur. J. 2015, 13, 8060ꢀ8063. (d) Ren, S.; Feng, C.;
Loh, T.ꢀP. Ironꢀ or SilverꢀCatalyzed Oxidative Fluorination of Cycloꢀ
propanols for the Synthesis of βꢀFluoroketones. Org. Biomol. Chem.
2015, 13, 5105ꢀ5109. (e) Huang, FꢀQ.; Xie, J.; Sun, JꢀG.; Wang, Yꢀ
W.; Dong, X.; Qi, LꢀW.; Zhang, B. Regioselective Synthesis of Carꢀ
bonylꢀContaining Alkyl Chlorides via SilverꢀCatalyzed RingꢀOpening
Chlorination of Cycloalkanols. Org. Lett. 2016, 18, 684ꢀ687. (f)
Bume, D. D.; Pitts, C. R.; Lectka, T. Tandem C–C Bond Cleavage of
ꢀCyclopropanols and Oxidative Aromatization by Manganese(IV)
Oxide in a Direct C–H to C–C Functionalization of Heteroaromatics.
Eur. J. Org. Chem. 2016, 26ꢀ30. (g) Wang, S.; Guo, L.ꢀN.; Wang, H.;
Duan, X.ꢀH. Alkynylation of Tertiary Cycloalkanols via Radical C–C
Bond Cleavage: A Route to Distal Alkynylated Ketones. Org. Lett.
2015, 17, 4798ꢀ4801. (h) Wang, Y.ꢀF.; Chiba, S. Mn(III)ꢀMediated
Reactions of Cyclopropanols with Vinyl Azides: Synthesis of Pyriꢀ
dine and 2ꢀAzabicyclo[3.3.1]nonꢀ2ꢀenꢀ1ꢀol Derivatives. J. Am. Chem.
Soc. 2009, 131, 12570ꢀ12572. (i) Wang, Y.ꢀF.; Toh, K. K.; Ng, E. P.
J.; Chiba, S. Mn(III)ꢀMediated Formal [3+3]ꢀAnnulation of Vinyl
Azides and Cyclopropanols: A Divergent Synthesis of Azaheterocyꢀ
cles. J. Am. Chem. Soc. 2011, 133, 6411ꢀ6421. (j) Iwasawa, N.;
Hayakawa, S.; Funahashi, M.; Isobe, K.; Narasaka, K. Generation of
βꢀCarbonyl Radicals from Cyclopropanol Derivatives by the Oxidaꢀ
tion with Manganese(III) 2ꢀPyridinecarboxylate and Their Reactions
with ElectronꢀRich and ꢀDeficient Olefins. Bull. Chem. Soc. Jpn.
1993, 66, 819ꢀ827. (k) Chiba, S.; Cao, Z.; El Bialy, S. A. A.; Narasaꢀ
ka, K. Generation of βꢀKeto Radicals from Cyclopropanols Catalyzed
by AgNO3. Chem. Lett. 2006, 35, 18ꢀ19. (l) Chiba, S.; Kitamura, M.;
Narasaka, K. Synthesis of (−)ꢀSordarin. J. Am. Chem. Soc. 2006, 128,
6931ꢀ6937. (m) Ilangovan, A.; Saravanakumar, S.; Malayappasamy,
S. γꢀCarbonyl Quinones: Radical Strategy for the Synthesis of Eveꢀ
lynin and Its Analogues by C–H Activation of Quinones Using Cyꢀ
clopropanols. Org. Lett. 2013, 15, 4968ꢀ4971. (n) Deng, Y.; Kauser,
N. I.; Islam, S. M.; Mohr, J. T. AgIIꢀMediated Synthesis of βꢀ
Fluoroketones by Oxidative Cyclopropanol Opening. Eur. J. Org.
Chem. 2017, 5872ꢀ5879. (o) Wang, C. Y.; Song, R.ꢀJ.; Xie, Y.ꢀX.; Li,
J.ꢀH. SilverꢀPromoted Oxidative Ring Opening/Alkynylation of Cyꢀ
clopropanols: Facile Synthesis of 4ꢀYnꢀ1ꢀones. Synthesis 2016, 48,
223ꢀ230. (p) Lu, S.ꢀC.; Li, H.ꢀS.; Xu, S.; Duan, G.ꢀY. Silverꢀ
Catalyzed C2ꢀSelective Direct Alkylation of Heteroarenes with Terꢀ
tiary Cycloalkanols. Org. Biomol. Chem. 2017, 15, 324ꢀ327. (q)
Ishida, N.; Okumura, S.; Nakanishi, Y.; Murakami, M. Ringꢀopening
Fluorination of Cyclobutanols and Cyclopropanols Catalyzed by Silꢀ
ver. Chem. Lett. 2015, 44, 821ꢀ823. (r) Keaton, K. A.; Phillips, A. J.
A CyclopropanolꢀBased Strategy for Subunit Coupling:ꢁ Total Synꢀ
thesis of (+)ꢀSpirolaxine Methyl Ether. Org. Lett. 2007, 9, 2717ꢀ2719.
ACS Paragon Plus Environment