10.1002/chem.201702362
Chemistry - A European Journal
FULL PAPER
performed using Kieselgel Merck 60 (230-400 mesh) as the stationary
phase. 1H-, 19F-, 13C-NMR spectra were recorded on at 500 or 400 MHz,
376 MHz and 125 or 101 MHz respectively. Chemical shifts are reported
in ppm downfield from TMS (1H, 13C) or CFCl3 (19F) as internal standards.
Mass spectra were recorded on an LC-MS instrument with chemical
ionization (CI) or a GC-MS instrument with electron impact ionization (EI).
LC-MS data were acquired on Agilent 1200 HPLC system equipped with
DAD/ELSD/LCMS-6120 diodematrix and mass-selective detector,
column: Poroshell 120 SBC18, 4.6 mm × 30 mm. Eluent, A, acetonitrile–
water with 0.1% of FA (99: 1); B, water with 0.1% of FA. Optical rotations
were measured on polarimeter in methanol using 1 dm cell; optical
rotation values are given in 10-1 deg cm2 g-1; concentrations (M) are
given in mmol L-1, wavelength 589 nm at 20 ºC. The enantiomeric excess
and retention time (tR) was determined for major signal by HPLCs: Daicel
CHIRALPACK IA, 5 µm, 4.6 × 250 mm, Daicel CHIRALPACK IB, 5 µm,
4.6 × 250 mm, Daicel CHIRALPACK OJ-H, 5 µm, 4.6 × 250mm, Daicel
CHIRALPACK AS-H, 5µm, 4.6 × 250 mm chiral columns, injection
volume 0.1 µL, eluent (hexane: 2-propanol). Solid compounds were
recrystalized from acetonitrile unless other is specified.
Keywords: building blocks • drug discovery • pyrrolidine •
azomethine ylide • spirocycles
[1]
H.-J. Böhm, A. Flohr, M. Stahl Drug Discov. Today: Technologies 2004,
1, 217.
[2]
[3]
F. Lovering, J. Bikker, C. Humblet J. Med. Chem. 2009, 52, 6752.
(a) A. Mann, Conformational restriction and/or steric hindrance in
medicinal chemistry. In The Practice of Medicinal Chemistry, 3rd ed.; C.
Wermuth, Ed.; Academic Press/Elsevier: Amsterdam, 2008; 363. (b) A.
Nadin, C. Hattotuwagama, I. Churcher Angew Chem. Int. Ed. 2012, 51,
1114. (c) D. J. Foley, A. Nelson, S. P Marsden Angew. Chem. Int. Ed.
2016, 55, 13650. (d) F. W. Goldberg, J. G. Kettle, T. Kogej, M. W. D.
Perry, N. P. Tomkinson Drug Discovery Today 2015, 20, 11; (e) C. M.
Marson Chem. Soc. Rev. 2011, 40, 5514.
[4]
(a) J. A. Burkhard, G. Wuitschik, M. Rogers-Evans, K. Müller, E. M.
Carreira Angew. Chem. Int. Ed. 2010, 49, 9025 (oxetanes). (b) R.
Gianatassio, J. M. Lopchuk, J. Wang, C. M. Pan, L. R. Malins, L. Prieto,
T. A. Brandt, M. R. Collins, G. M. Gallego, N. W. Sach, J. E. Spangler,
H. Zhu, J. Zhu, P. S. Baran Science 2016, 351, 241 (bicyclo[1.1.1]-
pentanes). (c) J. Wlochal, R. D. M. Davies, J. Burton Org. Lett. 2014,
16, 4094 (cubanes). (d) B. A. Chalmers, H. Xing, S. Houston, C. Clark,
S. Ghassabian, A. Kuo, B. Cao, A. Reitsma, C.-E. P. Murray, J. E. Stok,
G. M. Boyle, C. J. Pierce, S. W. Littler, D. A. Winkler, P. V. Bernhardt, C.
Pasay, J. J. DeVoss, J. McCarthy, P. G. Parsons, G. H. Walter, M. T.
Smith, H. M. Cooper, S. K. Nilsson, J. Tsanaktsidis, G. P. Savage, C. M.
Williams Angew. Chem. Int. Ed. 2016, 55, 3580 (cubanes). (e) J. A. Bull,
R. A. Croft, O. A. Davis, R. Doran, K. F. Morgan Chem. Rev. 2016, 22,
12150 (oxetanes). (f) N. Meanwell J. Med. Chem. 2011, 54, 2529.
(a) T. Druzhenko, O. Denisenko, Y. Kheylik, S. Zozulya, S. Shishkina, A.
Tolmachev, P. K. Mykhailiuk Org. Lett. 2015, 17, 1922. (b) A. V.
Denisenko, A. P. Mityuk, O. O. Grygorenko, D. M. Volochnyuk, O. V.
Shishkin, A. A. Tolmachev, P. K. Mykhailiuk Org. Lett. 2010, 12, 4372.
J. A. Burkhard, B. Wagner, H. Fischer, F. Schuler, K. Müller, E. M.
Carreira Angew. Chem. Int. Ed. 2010, 49, 3524.
General procedure for [3+2] cycloaddition.
A 10% solution of alkene 4 (25.2 g, 0.15 mol, 1.0 equiv), reagent 1 (42.6
g, 0.18 mol, 1.2 equiv) and LiF (11.7 g, 0.45 mol, 3.0 equiv) in CH3CN
was stirred at 60 ºC for 30 h. After completion of the reaction (monitored
by NMR), the reaction mixture was evaporated under reduced pressure.
The residue was dissolved in ethyl acetate and washed with a cold 10%
solution of K2CO3 (2×200 mL), a saturated solution of CuSO4 (3×200 mL),
a cold 10% solution of K2CO3 (2×200 mL) and brine (1×200 mL). The
organic phase was dried over Na2SO4, filtered, and the solvent was
removed under reduced pressure. The final product was purified by
distillation to afford the title compound 4a as a colorless oil (20.7 g, 0.07
mol, 46% yield).
[5]
[6]
[7]
Ethyl 2-benzyl-2-azaspiro[4.5]decane-4-carboxylate (4a)
Yield 46%; a colorless oil.
Recent reviews on spirocyclic compounds: (a) K. Undheim Synthesis
2015, 47, 2497. (b) E. M. Carreira, T. C. Fessard Chem. Rev. 2014,
114, 8257. (c) Y. Zheng, C. M. Tice, S. B. Singh Bioorg. Med. Chem.
Lett. 2014, 24, 3673.
1H NMR (400 MHz, DMSO) δ 7.51 – 7.06 (m, 5H, Ph), 4.25 – 3.95 (m,
2H, CH2CH3), 3.62 (d, J = 13.1 Hz, 1H, CHHPh), 3.55 (d, J = 13.1 Hz,
1H, CHHPh), 2.79 (t, J = 8.4 Hz, 1H), 2.61 (m, 3H), 2.28 (d, J = 9.0 Hz,
1H), 1.53 (m, 6H), 1.18 (m, 7H).
13C NMR (126 MHz, DMSO) δ 172.8 (s, CO2Et), 139.7 (s, Ph, C), 128.7
(s, Ph, CH), 128.6 (s, Ph, CH), 127.2 (s, Ph, CH), 63.3 (s), 60.2 (s), 59.9
(s), 55.4 (s), 54.2 (s), 45.7 (s), 38.1 (s), 33.1 (s), 26.0 (s), 24.1 (s), 23.3
(s), 14.7 (s, CH3).
[8]
(a) D. B. Li, M. Rogers-Evans, E. M. Carreira Org. Lett. 2013, 15, 4766.
(b) J. A. Burkhard, C. Guérot, H. Knust, E. M. Carreira Org.
Lett. 2012, 14, 66. (c) D. B. Li, M. Rogers-Evans, E. M. Carreira Org.
Lett. 2011, 13, 6134. (d) C. Guérot, B. H. Tchitchanov, H. Knust, E. M.
Carreira Org. Lett. 2011, 13, 780. (e) J. A. Burkhard, C. Guérot, H.
Knust, M. Rogers-Evans, E. M. Carreira Org. Lett. 2010, 12, 1944. (f) J.
Burkhard, E. M. Carreira Org. Lett. 2008, 10, 3525. (f) J. A. Burkhard, G.
Wuitschik, J.-M. Plancher, M. Rogers-Evans, E. M. Carreira Org.
Lett. 2013, 15, 4312. (g) G. Müller, T. Berkenbosch, J. C. J.
Benningshof, D. Stumpfe, J. Bajorath Chem. Eur. J. 2017, 23, 703.
(a) K. Geoghegan, J. W. Bode Org. Lett. 2015, 17, 1934. (b) B. V. S.
Reddy, S. Yarlagadda, C. R. Reddy, M. R. Reddy, B. Sridhar, D.
Satyanarayana, B. Jagadeesh Eur. J. Org. Chem. 2015, 14, 3076. (c)
W.-Y. Siau, J. W. Bode J. Am. Chem. Soc. 2014, 136, 17726. (d) S.
Kumar, P. D. Thornton, T. O. Painter, P. Jain, J. Downard, J. T.
Douglas, C. Santini J. Org. Chem. 2013, 78, 6529. (e) T. O. Painter, J.
R. Bunn, F. J. Schoenen, J. T. Douglas, V. W. Day, C. Santini J. Org.
Chem. 2013, 78, 3720. (f) S. Kumar, P. D. Thorntonand, C. Santini
ACS Comb. Sci. 2013, 15, 564. (g) M. A. Perry, R. R. Hill, S. D.
Rychnovsky Org. Lett. 2013, 15, 2226-2229. (h) M. A. Perry, R. R. Hill,
J. J. Leong, S. D. Rychnovsky Org. Lett. 2015, 17, 3268-3271. (i) A. A.
Kirichok, I. Shton, M. Kliachyna, I. Pishel, P. K. Mykhailiuk Angew.
Chem. Int. Ed. 2017, 56, 8865.
MS (EI, m/z): 301 (M +).
Anal. calcd for C19H27NO2: C, 75.71; H, 9.03; N, 4.65. Found: C, 75.97; H,
9.34; N, 4.96.
[9]
Acknowledgements
Authors are very grateful to Dr. S. Shishkina for X-Ray studies,
to Prof. A. Tolmachev for financial support, and to Mrs I.
Sankova for the help with the preparation of the manuscript. to
Dr. O. Brusylovets, V. Alekseev, V. V. Skyba for purification by
chromatography. Dr. K. Nikitin is acknowledged for providing
acid 25. All chemicals were kindly provided by Enamine Ltd
[10] (a) K. Fjelbye, M. Marigo, R. P. Clausen, K. Juhl Synlett 2017, 28, 231.
(b) B. A. Chalyk, A. A. Isakov, M. V. Butko, K. V. Hrebeniuk, O. V.
Savych, O. V. Kucher, K. S. Gavrilenko, T. V. Druzhenko, V. S.
This article is protected by copyright. All rights reserved.