Full Paper
was isolated (>95 %) as a brown solid. 1H NMR (500 MHz, CDCl3):
δ = 8.60–8.62 (m, 1 H), 8.09 (d, J = 8.3 Hz, 1 H), 7.96 (d, J = 8.5 Hz,
1 H), 7.64–7.70 (m, 2 H), 7.43 (t, J = 7.4 Hz, 1 H), 7.36 (d, J = 7.8 Hz,
1 H), 7.18–7.22 (m, 1 H), 6.51 (s, 1 H), 4.63 (t, J = 7.4 Hz, 2 H), 3.45
(t, J = 7.4 Hz, 2 H), 2.71 (s, 3 H) ppm. 13C{1H} NMR (125.8 MHz,
CDCl3): δ = 161.6, 160.3, 158.2, 149.7, 148.9, 136.7, 129.9, 128.1,
124.9, 123.9, 122.0, 121.8, 120.0, 101.4, 67.6, 37.9, 26.0 ppm. HRMS
(ESI+): calcd. for C17H17N2O [M]+ 265.1344; found 265.1335.
Keywords: Homogeneous catalysis · Palladium · Cross-
coupling · Ligand design · Ethers
[1] S. Enthaler, A. Company, Chem. Soc. Rev. 2011, 40, 4912–4924.
[2] J. Lindley, Tetrahedron 1984, 40, 1433–1456.
[3] J. P. Stambuli, in: New Trends in Cross-Coupling: Theory and Application
(Ed.: T. J. Colacot), Royal Society of Chemistry, Cambridge, UK, 2014, p.
254–275.
[4] a) K. E. Torraca, X. H. Huang, C. A. Parrish, S. L. Buchwald, J. Am. Chem.
Soc. 2001, 123, 10770–10771; b) A. V. Vorogushin, X. H. Huang, S. L.
Buchwald, J. Am. Chem. Soc. 2005, 127, 8146–8149.
[5] X. X. Wu, B. P. Fors, S. L. Buchwald, Angew. Chem. Int. Ed. 2011, 50, 9943–
9947; Angew. Chem. 2011, 123, 10117–10121.
2-Phenethoxynaphthalene (4a): Following GPE [L2 (10.0 mg), aryl
mesylate (222.3 mg), alcohol (144 μL)], compound 4a was isolated
(75 %) as a white solid. 1H NMR (500 MHz, CDCl3): δ = 7.74–7.83 (m,
3 H), 7.48 (t, J = 7.3 Hz, 1 H), 7.36–7.42 (m, 5 H), 7.29–7.34 (m, 1 H),
7.18–7.23 (m, 2 H), 4.36 (t, J = 7.1 Hz, 2 H), 3.23 (t, J = 7.1 Hz, 2 H)
ppm. 13C{1H} NMR (125.8 MHz, CDCl3): δ = 157.0, 138.4, 134.7, 129.5,
129.2, 128.7, 127.8, 126.9, 126.7, 126.5, 123.8, 119.1, 106.9, 68.9,
36.0 ppm. HRMS (ESI+): calcd. for C18H17O [M + H]+ 249.1235; found
249.1274.
[6] S. Gowrisankar, A. G. Sergeev, P. Anbarasan, A. Spannenberg, H. Neu-
mann, M. Beller, J. Am. Chem. Soc. 2010, 132, 11592–11598.
[7] P. E. Maligres, J. Li, S. W. Krska, J. D. Schreier, I. T. Raheem, Angew. Chem.
Int. Ed. 2012, 51, 9071–9074; Angew. Chem. 2012, 124, 9205–9208.
[8] For selected representative examples, see: a) A. F. Littke, G. C. Fu, J. Am.
Chem. Soc. 2001, 123, 6989–7000; b) G. Adjabeng, T. Brenstrum, J. Wilson,
C. Frampton, A. Robertson, J. Hillhouse, J. McNulty, A. Capretta, Org. Lett.
2003, 5, 953–955; c) T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buch-
wald, J. Am. Chem. Soc. 2005, 127, 4685–4696; d) N. Marion, O. Navarro,
J. G. Mei, E. D. Stevens, N. M. Scott, S. P. Nolan, J. Am. Chem. Soc. 2006,
128, 4101–4111; e) O. Navarro, N. Marion, J. G. Mei, S. P. Nolan, Chem.
Eur. J. 2006, 12, 5142–5148; f) E. Alvaro, J. F. Hartwig, J. Am. Chem. Soc.
2009, 131, 7858–7868; g) C. Han, S. L. Buchwald, J. Am. Chem. Soc. 2009,
131, 7532–7533; h) A. G. Sergeev, T. Schulz, C. Torborg, A. Spannenberg,
H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2009, 48, 7595–7599;
Angew. Chem. 2009, 121, 7731–7735; i) R. J. Lundgren, B. D. Peters, P. G.
Alsabeh, M. Stradiotto, Angew. Chem. Int. Ed. 2010, 49, 4071–4074;
Angew. Chem. 2010, 122, 4165–4168; j) M. Pompeo, R. D. Froese, N. Ha-
dei, M. G. Organ, Angew. Chem. Int. Ed. 2012, 51, 11354–11357; Angew.
Chem. 2012, 124, 11516–11519; k) P. G. Alsabeh, R. J. Lundgren, R. McDo-
nald, C. C. Johansson Seechurn, T. J. Colacot, M. Stradiotto, Chem. Eur. J.
2013, 19, 2131–2141; l) G.-p. Lu, C. Cai, B. H. Lipshutz, Green Chem. 2013,
15, 105–109; m) C. A. Wheaton, J.-P. J. Bow, M. Stradiotto, Organometallics
2013, 32, 6148–6161; n) C. W. Cheung, S. L. Buchwald, Org. Lett. 2013,
15, 3998–4001; o) J. L. Farmer, M. Pompeo, A. J. Lough, M. G. Organ,
Chem. Eur. J. 2014, 20, 15790–15798; p) M. Pompeo, J. L. Farmer, R. D.
Froese, M. G. Organ, Angew. Chem. Int. Ed. 2014, 53, 3223–3226; Angew.
Chem. 2014, 126, 3287–3290; q) J. Zhang, A. Bellomo, N. Trongsiriwat, T.
Jia, P. J. Carroll, S. D. Dreher, M. T. Tudge, H. Yin, J. R. Robinson, E. J.
Schelter, P. J. Walsh, J. Am. Chem. Soc. 2014, 136, 6276–6287; r) P. M.
MacQueen, A. J. Chisholm, B. K. V. Hargreaves, M. Stradiotto, Chem. Eur.
J. 2015, 21, 11006–11009.
Following GPE [L1 (31.6 mg), aryl mesylate (133.4 mg), alcohol
(86.2 μL)], compound 4a was isolated (42 %) as a white solid.
1-Phenethoxy-4-phenoxybenzene (4b): Following GPE [L2
(10.0 mg), aryl mesylate (264.3 mg), alcohol (144 μL)], compound
4b was isolated (70 %) as a pale yellow oil. 1H NMR (500 MHz,
CDCl3): δ = 7.33–7.46 (m, 7 H), 7.14 (apparent t, J = 7.4 Hz, 1 H),
7.04–7.09 (m, 4 H), 6.96–7.00 (m, 2 H), 4.26 (t, J = 7.1 Hz, 2 H), 3.21
(t, J = 7.1 Hz, 2 H) ppm. 13C{1H} NMR (125.8 MHz, CDCl3): δ = 158.6,
155.2, 150.3, 138.3, 129.7, 129.1, 128.6, 126.6, 122.5, 120.9, 117.7,
115.7, 69.3, 36.0 ppm. HRMS (ESI+): calcd. for C20H19O2 [M + H]+
291.1340; found 291.1380.
1-Methyl-2-phenethoxybenezne (4c): Following GPE [L2
(10.0 mg), aryl mesylate (200.3 mg), alcohol (144 μL)], compound
1
4c was isolated (64 %) as a colorless oil. H NMR (500 MHz, CDCl3):
δ = 7.40–7.45 (m, 4 H), 7.33–7.37 (m, 1 H), 7.22–7.26 (m, 2 H), 6.96
(t, J = 7.4 Hz, 1 H), 6.89–6.92 (m, 1 H), 4.28 (t, J = 6.9 Hz, 2 H), 3.22
(t, J = 6.9 Hz, 2 H), 2.33 (s, 3 H) ppm. 13C{1H} NMR (125.8 MHz,
CDCl3): δ = 157.0, 138.7, 130.7, 129.2, 128.4, 126.9, 126.8, 126.5,
120.4, 111.0, 68.7, 36.1, 16.3 ppm. HRMS (ESI+): calcd. for C15H16NaO
[M + Na]+ 235.1099; found 235.1093.
1-(4-Phenethoxyphenyl)-1H-pyrrole (4d): Following GPE [L2
(10.0 mg), aryl mesylate (237.3 mg), alcohol (144 μL)], compound
[9] For an intriguing example of nickel-catalyzed C–O cross-coupling at
room temperature enabled by photoredox catalysis, see: J. A. Terrett,
J. D. Cuthbertson, V. W. Shurtleff, D. W. C. MacMillan, Nature 2015, 524,
330–334.
1
4d was isolated (71 %) as a white solid. H NMR (500 MHz, CDCl3):
δ = 7.27–7.39 (m, 7 H), 7.02–7.04 (m, 2 H), 6.96–7.00 (m, 2 H), 6.35–
6.37 (m, 2 H), 4.24 (t, J = 7.1 Hz, 2 H), 3.16 (t, J = 7.1 Hz, 2 H) ppm.
13C{1H} NMR (125.8 MHz, CDCl3): δ = 156.9, 138.1, 134.6, 129.0,
128.5, 126.5, 122.1, 119.7, 115.3, 109.8, 69.1, 35.8 ppm. HRMS (ESI+):
calcd. for C18H18NO [M + H]+ 364.1344; found 264.1383.
[10] a) R. J. Lundgren, M. Stradiotto, Angew. Chem. Int. Ed. 2010, 49, 8686–
8690; Angew. Chem. 2010, 122, 8868; b) R. J. Lundgren, K. D. Hesp, M.
Stradiotto, Synlett 2011, 2443–2458; c) B. J. Tardiff, R. McDonald, M. J.
Ferguson, M. Stradiotto, J. Org. Chem. 2012, 77, 1056–1071; d) P. G. Al-
sabeh, M. Stradiotto, Angew. Chem. Int. Ed. 2013, 52, 7242–7246; Angew.
Chem. 2013, 125, 7383; e) N. L. Rotta-Loria, A. Borzenko, P. G. Alsabeh,
C. B. Lavery, M. Stradiotto, Adv. Synth. Catal. 2015, 357, 100–106.
[11] For the use of L1-containing palladacyclic precatalysts, see: N. C. Bruno,
S. L. Buchwald, Org. Lett. 2013, 15, 2876–2879, see also ref.[8n]
[12] C. M. So, F. Y. Kwong, Chem. Soc. Rev. 2011, 40, 4963–4972-->.
[13] M. C. Wilkinson, Org. Lett. 2011, 13, 2232–2235.
Supporting information (see footnote on first page of this article):
Copies of the 1H and 13C{1H} NMR spectra of the isolated com-
pounds.
Acknowledgments
[14] D. A. Wilson, C. J. Wilson, C. Moldoveanu, A. M. Resmerita, P. Corcoran,
L. M. Hoang, B. M. Rosen, V. Percec, J. Am. Chem. Soc. 2010, 132, 1800–
1801.
The authors are appreciative of the generous financial support
for this work from the Natural Sciences and Engineering Re-
search Council of Canada (NSERC).
Received: February 22, 2016
Published Online: April 24, 2016
Eur. J. Org. Chem. 2016, 2444–2449
2449
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim