Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
BTO, DTFMP-BTO and DTPA-BTO are in the range of 436‒573 nm,
being red-shifted relative to those in solutions to different extent.
The solid of DTPA-BTO shows the reddest PL peak at 573 nm (Fig.
S4). However, in solids, o-DMP-BTO and DMOP-BTO afford blue-
shifted PL peaks at 405 and 466 nm, respectively. The difference in
PL peaks should result from the varied molecular alignments and
intermolecular interactions. The ΦF values of all the luminogens in
solids except for o-DMP-BTO and DTPA-BTO are greatly advanced to
45.1%‒86.9%, which verifies again their AIE characteristics. The
lifetimes of these luminogens in solids are appaerently longer than
those in THF solutions (Table 1 and Fig. S5), which are consistent
with the ΦF values. The ΦF value of o-DMP-BTO is moderately
increased from 19.2% in solution to 29.4% in solid, which is
attributed to the further rigidified molecular structure by spatial
constraint in condensed phase. The ΦF value of DTPA-BTO is
enhanced apparently from 33.3% to 83.3%, suggesting the RIR
effect overcomes the ICT effect in solid. These results also reveal
that the steric and electronic effects can well modulate the PL
behaviors of BTO-based AIEgens.
DOI: 10.1039/C6CC09892D
Kwok and B. Z. Tang, Adv. Funct. Mater., 2009, 19, 905.
4. (a) Z. Zhao, J. W. Y. Lam and B. Z. Tang, Curr. Org. Chem., 2010,
14, 2109; (b) G.-F. Zhang, H. Wang, M. P. Aldred, T. Chen, Z.-Q.
Chen, X. Meng and M.-Q. Zhu, Chem. Mater., 2014, 26, 4433;
(c) J. Huang, X. Yang, X. Li, P. Chen, R. Tang, F. Li, P. Lu, Y. Ma, L.
Wang, J. Qin, Q. Li and Z. Li, Chem. Commun., 2012, 48, 9586.
5. (a) W. Li, D. Chen, H. Wang, S. Luo, L. Dong, Y. Zhang, J. Shi, B.
Tong and Y. Dong, ACS Appl. Mater. Interfaces, 2015, 7, 26094;
(b) X. Feng, B. Tong, J. Shen, J. Shi, T. Han, L. Chen, J. Zhi, P. Lu,
Y. Ma and Y. Dong, J. Phys. Chem. B, 2010, 114, 16731.
6. (a) C.-W. Chang, C. J. Bhongale, C.-S. Lee, W.-K. Huang, C.-S. Hsu
and E. W.-G. Diau, J. Phys. Chem. C, 2012, 116, 15146; (b) B.
Wang, Y. Wang, J. Hua, Y. Jiang, J. Huang, S. Qian and H. Tian,
Chem. Eur. J., 2011, 17, 2647; (c) X. Han, Q. Bai, L. Yao, H. Liu,
Y. Gao, J. Li, L. Liu, Y. Liu, X. Li, P. Lu and B. Yang, Adv. Funct.
Mater., 2015, 25, 7521.
7. (a) T. Sanji, K. Shiraishi and M. Tanaka, ACS Appl. Mater.
Interfaces, 2009, 1, 270; (b) K. Shiraishi, T. Sanji and M. Tanaka,
ACS Appl. Mater. Interfaces, 2009, 1, 1379.
8. M. Chen, L. Li, H. Nie, J. Tong, L. Yan, B. Xu, J. Z. Sun, W. Tian, Z.
Zhao, A. Qin and B. Z. Tang, Chem. Sci., 2015, 6, 1932.
In summary, a series of BTO-based luminogens with prominent
AIE nature are facilely synthesized and characterized. Their AIE
properties are modulated effectively by controlling the conjugation,
steric and electronic effects of the substituents. The rotation of the
phenyls against the BTO core can nonradiatively deactivate the
excited state of the luminogen, leading to weak emission. The
restriction of intramolecular rotations can greatly improve emission,
which can be achieved by internal steric hindrance and/or external
constraint by aggregation. The AIE property is also sensitive to
strong ICT effect which increases the PL efficiency in solution. These
novel BTO-based AIEgens would be promising candidates for high-
tech applications in materials science and biotechnology, and
relevant in-depth studies are in progress.
9. (a) J. Zhang, B. Xu, J. Chen, S. Ma, Y. Dong, L. Wang, B. Li, L. Ye
and W. Tian, Adv. Mater., 2014, 26, 739; (b) H. Li, X. Zhang, Z.
Chi, B. Xu, W. Zhou, S. Liu, Y. Zhang and J. Xu, Org. Lett., 2011,
13, 556; (c) B. Xu, J. He, Y. Dong, F. Chen, W. Yu and W. Tian,
Chem. Commun., 2011, 47, 6602; (d) S. Kim, H. E. Pudavar, A.
Bonoiu and P. N. Prasad, Adv. Mater., 2007, 19, 3791.
10. (a) X. Luo, J. Li, C. Li, L. Heng, Y. Dong, Z. Liu, Z. Bo and B. Z.
Tang, Adv. Mater., 2011, 23, 3261; (b) X. Gu, J. Yao, G. Zhang,
Y. Yan, C. Zhang, Q. Peng, Q. Liao, Y. Wu, Z. Xu, Y. Zhao, H. Fu
and D. Zhang, Adv. Funct. Mater., 2012, 22, 4862; (c) J.-H.
Wang, H.-T. Feng, J. Luo and Y.-S. Zheng, J. Org. Chem., 2014,
79, 5746.
11. (a) K. Kokado and Y. Chujo, J. Org. Chem., 2011, 76, 316; (b) R.
Furue, T. Nishimoto, I. S. Park, J. Lee and T. Yasuda, Angew.
Chem. Int. Ed., 2016, 55, 7171; (c) H. Naito, Y. Morisaki and Y.
Chujo, Angew. Chem. Int. Ed., 2015, 54, 5084.
12. (a) R. Yoshii, A. Hirose, K. Tanaka and Y. Chujo, J. Am. Chem.
Soc., 2014, 136, 18131; (b) R. Yoshii, K. Suenaga, K. Tanaka and
Y. Chujo, Chem. Eur. J., 2015, 21, 7231; (c) Q. Liu, X. Wang, H.
Yan, Y. Wu, Z. Li, S. Gong, P. Liu and Z. Liu, J. Mater. Chem. C,
2015, 3, 2953; (d) M. Yamaguchi, S. Ito, A. Hirose, K. Tanaka
and Y. Chujo, J. Mater. Chem. C, 2016, 4, 5314.
This work was financially supported by the National Natural
Science Foundation of China (51273053 and 21673082), the
National Basic Research Program of China (973 Program,
2015CB655004 and 2013CB834702), the Guangdong Natural
Science
Funds
for
Distinguished
Young
Scholar
(2014A030306035), the Guangdong Innovative Research Team
Program of China (201101C0105067115), the Natural Science
Foundation of Guangdong Province (2016A030312002), the
Innovation and Technology Commission of Hong Kong (ITC-
CNERC14SC01) and the Fundamental Research Funds for the
Central Universities (2015ZY013).
13. (a) B. Ventura, Y. M. Poronik, I. Deperasińska and D. T. Gryko,
Chem. Eur. J., 2016, 22, 15380; (b) Y. M. Poronik and D. T.
Gryko, Chem. Commun., 2014, 50, 5688.
14. (a) Z. Zhao, J. W. Y. Lam and B. Z. Tang, J. Mater. Chem., 2012,
22, 23726; (b) J. Yang, J. Huang, Q. Li and Z. Li, J. Mater. Chem.
C, 2016, 4, 2663; (c) D. Ding, K. Li, B. Liu and B. Z. Tang, Acc.
Chem. Res., 2013, 46, 2441; (d) J. Liang, B. Z. Tang and B. Liu,
Chem. Soc. Rev., 2015, 44, 2798; (e) X. Zhang, X. Zhang, L. Tao,
Z. Chi, J. Xu and Y. Wei, J. Mater. Chem. B, 2014, 2, 4398.
15. (a) F. D. Maria, M. Zangoli, I. E. Palamá, E. Fabiano, A. Zanelli, M.
Monari, A. Perinot, M. Caironi, V. Maiorano, A. Maggiore, M.
Pugliese, E. Salatelli, G. Gigli, I. Viola and G. Barbarella, Adv.
Funct. Mater., 2016, 26, 6970; (b) G. Barbarella, L. Favaretto, A.
Zanelli, G. Gigli, M. Mazzeo, M. Anni and A. Bongini, Adv.
Funct. Mater., 2005, 15, 664.
16. (a) J. Geng, K. Li, D. Ding, X. Zhang, W. Qin, J. Liu, B. Z. Tang and
B. Liu, Small., 2012, 8, 3655; (b) R. Hu, E. Lager, A. Aguilar-
Aguilar, J. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y.
Zhong, K. S. Wong, E. Peña-Cabrera and B. Z. Tang, J. Phys.
Chem. C, 2009, 113, 15845.
References
1. (a) J. Mei, N. Leung, R. Kwok, J. W. Y. Lam and B. Z. Tang, Chem.
Rev., 2015, 115, 11718; (b) J. Mei, Y. Hong, J. W. Y. Lam, A. Qin,
Y. Tang and B. Z. Tang, Adv. Mater., 2014, 26, 5429.
2. (a) F. Bu, R. Duan, Y. Xie, Y. Yi, Q. Peng, R. Hu, A. Qin, Z. Zhao
and B. Z. Tang, Angew. Chem. Int. Ed., 2015, 54, 14492; (b) N. L.
Leung, N. Xie, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Y.
Lam and B. Z. Tang, Chem. Eur. J., 2014, 20, 15349; (c) F. Bu, E.
Wang, Q. Peng, R. Hu, A. Qin, Z. Zhao and B. Z. Tang, Chem.
Eur. J., 2015, 21, 4440.
3. (a) Z. Zhao, B. He and B. Z. Tang, Chem. Sci., 2015, 6, 5437; (b) Z.
Zhao, Z. Wang, P. Lu, C. Y. K. Chan, D. Liu, J. W. Y. Lam, H. H. Y.
Sung, I. D. Williams, Y. Ma and B. Z. Tang, Angew. Chem. Int.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins