10.1002/chem.201904750
Chemistry - A European Journal
FULL PAPER
[3]
a) A. Fürstner, P. W. Davies, J. Am. Chem. Soc. 2005, 127, 15024; b) I.
Nakamura, Y. Mizushima, Y. Yamamoto, J. Am. Chem. Soc. 2005, 127,
15022; c) K. W. Anderson, T. Ikawa, R. E. Tundel, S. L. Buchwald, J.
Am. Chem. Soc. 2006, 128, 10694; d) b) D.-H. Lee, K.-H. Kwon, C. S.
Yi, J. Am. Chem. Soc. 2012, 134, 177; e) R. Zhu, J. Wei, Z.-J. Shi,
Chem. Sci. 2013, 4, 3706; f) Z. Zhou, G. Liu, Y. Shen, X. Lu, Org.
Chem. Front. 2014, 1, 1161; g) G. Liu, Y. Shen, Z. Zhou, X. Lu, Angew.
Chem. Int. Ed. 2013, 52, 6033; Angew. Chem. 2013, 125, 6147; h) J.
Ye, Z. Shi, T. Sperger, Y. Yasukawa, C. Kingston, F. Schoenebeck, M.
Lautens, Nat. Chem. 2017, 9, 361; i) L. Qin, D.-D. Vo, A. Nakhai, C. D.
Andersson, M. Elofsson, ACS Comb. Sci. 2017, 19, 370; j) X.-F. Xia, W.
He, G.-W. Zhang, D. Wang, Org. Chem. Front. 2019, 6, 342.
Conclusions
In summary, we have developed an efficient electrochemical
system that can undergo a CDC reaction and condensation
between phenols and β-dicarbonyl compounds to produce a
series of benzofurans. This strategy avoids the use of transition
metals and external chemical oxidants and provides a simple
and atom-economical way to synthesize benzofurans. Due to
these advantages, this reaction should be of high synthetic value.
[4]
[5]
[6]
a) C.-J. Li, Acc. Chem. Res. 2009, 42, 335; b) C. J. Scheuermann,
Chem. Asian J. 2010, 5, 436; c) C. S. Yeung, V. M. Dong, Chem. Rev.
2011, 111 , 1215; d) S. A. Girard, T. Knauber, C.-J. Li, Angew. Chem.
Int. Ed. 2014, 53, 74; Angew. Chem. 2014, 126, 76.
Experimental Section
General procedures for synthesis of 3aa. A solution of phenol
1a (0.6 mmol), β-diketone 2a (1.2 mmol) and nBu4NBF4 (0.6
mmol) in HFIP/DCM = 1/1 (10.0 mL) was stirred at room
temperature under N2 atmosphere in an oven-dried undivided
cell which was equipped with platinum plate electrodes (1.0
cm×1.0 cm×0.1 mm) as both the anode and cathode. A balloon
filled with N2 atmosphere was connected to the electrolytic cell.
The reaction mixture was stirred and electrolyzed at a constant
potential of 2.5 V for 10 hours. The reaction was monitored by
thin layer chromatography(TLC), visualized by fluorescence
quenching under UV light. After the reaction was completed, the
product 3aa (162.9 mg, 83% yield) was purified by column
chromatography on silica gel (petroleum ether/ethyl acetate,
100:1 (v/v)).
CV Experiments. Cyclic voltammetry was performed with a
potentiostat (Corrtest CS3104) in a three-electrode cell at
synthetic conditions. Platinum plates were used as working and
counter electrodes and a leak-free Ag/AgCl (Harvard Apparatus
LF-2) was used as reference electrode. The ranging of scan was
0V to 3.5V with a 0.1 V/s scan rate.
a) X. Guo, R. Yu, H. Li, Z. Li, J. Am. Chem. Soc. 2009, 131, 17387; b)
E. Gaster, Y. Vainer, A. Regev, S. Narute, K. Sudheendran, A.
Werbeloff, H. Shalit, D. Pappo, Angew. Chem. Int. Ed. 2015, 54, 4198;
Angew. Chem. 2015, 127, 4272.
For reviews, see: a) J. B. Sperry, D. L. Wright, Chem. Soc. Rev. 2006,
35, 605; b) A. Jutand, Chem. Rev. 2008, 108, 2300; c) J.-i. Yoshida, K.
Kataoka, R. Horcajada, A. Nagaki, Chem. Rev. 2008, 108, 2265; d) R.
Francke, R. D. Little, Chem. Soc. Rev. 2014, 43, 2492; e) E. J. Horn, B.
R. Rosen, P. S. Baran, ACS Cent. Sci. 2016, 2, 302; f) Yan, M.;
Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230; g) Yan, M.;
Kawamata, Y.; Baran, P. S. Angew. Chem. Int. Ed. 2018, 57, 4149; h)
S. Tang, Y. Liu, A. Lei, Chem 2018, 4, 27; i) S. Tang, L. Zeng, A. Lei, J.
Am. Chem. Soc. 2018, 140, 13128; k) J.-i. Yoshida, A. Shimizu, R.
Hayashi, Chem. Rev. 2018, 118, 4702; k) Y. Jiang, K. Xu, C. Zeng,
Chem. Rev. 2018, 118, 4485; l) S. R. Waldvogel, S. Lips, M. Selt, B.
Riehl, C. J. Kampf, Chem. Rev. 2018, 118, 6706; m) A. Wiebe, T.
Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, Angew.
Chem. Int. Ed. 2018, 57, 5594; Angew. Chem. 2018, 130, 5694; n) H.
Wang, X. Gao, Z. Lv, T.Abdelilah, A. Lei, Chem. Rev. 2019, 119, 6769.
For some recent examples, see: a) R. Hayashi, A. Shimizu, J.-i.
Yoshida, J. Am. Chem. Soc. 2016, 138, 8400; b) A. Badalyan, S. S.
Stahl, Nature 2016, 535, 406; c) E. J. Horn, B. R. Rosen, Y. Chen, J.
Tang, K. Chen, M. D. Eastgate, P. S. Baran, Nature 2016, 533, 77; d) N.
Sauermann, T. H. Meyer, C. Tian, L. Ackermann, J. Am. Chem. Soc.
2017, 139, 18452; e) Q.-L. Yang, Y.-Q. Li, C. Ma, P. Fang, X.-J. Zhang,
T.-S. Mei, J. Am. Chem. Soc. 2017, 139, 3293; f) N. Fu, G. Sauer, A.
Saha, A. Loo, S. Lin, Science 2017, 357, 575; g) A. J. J. Lennox, S. L.
Goes, M. P. Webster, H. F. Koolman, S. W. Djuric, S. S. Stahl, J. Am.
Chem. Soc. 2018, 140, 11227; h) R. Hayashi, A. Shimizu, J. A. Davies,
Y. Ishizaki, C. Willis, J.-i. Yoshida, Angew. Chem. Int. Ed. 2018, 57,
12891; Angew. Chem. 2018, 130, 13073; i) J. C. Siu, G. S. Sauer, A.
Saha, R. L. Macey, N. Fu, T. Chauvirie, K. L. Lancaster, S. Lin, J. Am.
Chem. Soc. 2018, 40, 12511; j) J. C. Siu, J. B. Parry, S. Lin, J. Am.
Chem. Soc. 2019, 141, 2825; k) J. Li, L. He, X. Liu, X. Cheng, G. Li,
Angew. Chem. Int. Ed. 2019, 58, 1759; Angew. Chem. 2019, 131, 1773;
l) Y. Liang, F. Lin, Y. Adeli, R. Jin, N. Jiao, Angew. Chem. Int. Ed.
2019, 58, 4566; Angew. Chem. 2019, 131, 4614; m) Q. Zhang X.
Chang, L. Peng, C. Guo, Angew. Chem. Int. Ed. 2019, 58, 6999;
Angew. Chem. 2019, 131, 7073; n) F. Wang, S. S. Stahl, Angew. Chem.
Int. Ed. 2019, 58, 6385; Angew. Chem. 2019, 131, 6451; o) X. Huang,
Q. Zhang, J. Lin, K. Harms, E. Meggers, Nat. Catal. 2019, 2, 34; p) O.
Baslé, N. Borduas, P. Dubois, J. M. Chapuzet, T. H. Chan, J. Lessard,
C.-J. Li, Chem. Eur. J., 2010, 16, 8162.
Data availability. The authors declare that the data supporting
the findings of this study are available within the article and its
Supplementary Information Files.
[7]
Acknowledgements
We thank the “1000-Youth Talents Plan”, and the National
Natural Science Foundation of China (grant 21672097,
21972064) for their financial support and, as well as the
“Innovation
& Entrepreneurship Talents Plan” of Jiangsu
Province.
Keywords:
Electrochemistry
·phenols
·β-
diketones ·CDC ·benzofurans
[1]
[2]
a) S. L. Greene in Novel Psychoactive Substances (Eds.: P. I. Dargan,
D. M. Wood), Academic Press, Boston, 2013, pp. 383 – 392; b) R. D.
Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem. 2014, 57, 5845;
c) H. Khanam, Shamsuzzaman, Eur. J. Med. Chem. 2015, 97, 483; d)
R. J. Nevagi, S. N. Dighe, Eur. J. Med. Chem. 2015, 97, 561.
[8]
For some recent examples on intermolecular cyclization, see: a) J.
Chen, W.-Q. Yan, C. M. Lam, C.-C. Zeng, L.-M. Hu, R. D. Little, Org.
Lett. 2015, 17, 986; b) K. Liu, S. Tang, P. Huang, A. Lei, Nat. Commun.
2017, 8, 775; c) C.-Y. Cai, H.-C. Xu, Nat. Commun. 2018, 9, 3551; d)
Z.-J. Wu, S.-R. Li, H.-C. Xu, Angew. Chem. Int. Ed. 2018, 57, 14070;
Angew. Chem. 2018, 130, 14266; e) P. Xiong, H.-H. Xu, J. Song, H.-C.
a) L. Qin, D.-D. Vo, A. Nakhai, C. D. Andersson, M. Elofsson, ACS
Comb. Sci. 2017, 19, 370; b) J. J. Hirner, D. J. Faizi, S. A. Blum, J. Am.
Chem. Soc. 2014, 136, 4740; c) G. Deng, M. Li, K. Yu, C. Liu, Z. Liu,
S. Duan, W. Chen, X. Yang, H. Zhang, P. J. Walsh, Angew. Chem.
Int. Ed. 2019, 58, 2826; Angew. Chem. 2019, 131, 2852.
This article is protected by copyright. All rights reserved.