T.-C. Lin, Y.-H. Lee, C.-L. Hu,Y.-K. L., Y.-J. Huang
FULL PAPER
land, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Bredas, J. W. Perry,
S. R. Marder, J. Am. Chem. Soc. 2006, 128, 14444–14445.
7.74, 7.72 (d, J = 8.1 Hz, 2 H), 7.61, 7.58 (d, J = 8.1 Hz, 2 H),
7.50, 7.47 (d, J = 7.8 Hz, 8 H), 7.27–7.22 (m, 26 H), 7.13–7.07 (m,
18 H), 7.03–9.67 (m, 16 H), 2.08–1.76 (m, 24 H), 1.20–1.08 (m, 72
H), 0.85–0.72 (m, 60 H) ppm. 13C NMR (300 MHz, CDCl3): δ =
165.12, 152.73, 151.94, 151.85, 151.16, 148.31, 148.00, 146.49,
146.16, 144.69, 136.21, 134.02, 129.09, 126.14, 123.81, 123.60,
123.40, 122.31, 121.30, 121.06, 119.78, 119.55, 118.60, 116.95,
55.06, 40.18, 31.66, 29.65, 23.92, 22.56, 14.08 ppm. HRMS: calcd.
for C200H233N8O [M + H]+ 2765.0351; found 2765.1206.
[5]
For selected examples, see: a) L. Ventelon, L. Moreaux, J.
Mertz, M. Blanchard-Desce, Chem. Commun. 1999, 2055–
2056; b) L. Ventelon, L. Moreaux, J. Mertz, M. Blanchard-
Desce, Synth. Met. 2002, 127, 17–21; c) O. Mongin, L. Porres,
L. Moreaux, J. Mertz, M. Blanchard-Desce, Org. Lett. 2002, 4,
719–722; d) L. Porres, C. Katan, O. Mongin, T. Pons, J. Mertz,
M. Blanchard-Desce, J. Mol. Struct. 2004, 704, 17–24; e) L.
Porres, O. Mongin, C. Katan, M. Charlot, T. Pons, J. Mertz,
M. Blanchard-Desce, Org. Lett. 2004, 6, 47–50; f) C. Katan, F.
Terenziani, O. Mongin, M. H. V. Werts, L. Porres, T. Pons, J.
Mertz, S. Tretiak, M. Blanchard-Desce, J. Phys. Chem. A 2005,
109, 3024–3037; g) M. Charlot, L. Porres, C. D. Entwistle, A.
Beeby, T. B. Marder, M. Blanchard-Desce, Phys. Chem. Chem.
Phys. 2005, 7, 600–606; h) M. Charlot, N. Izard, O. Mongin,
D. Riehl, M. Blanchard-Desce, Chem. Phys. Lett. 2006, 417,
297–302; i) F. Terenziani, C. L. Droumaguet, C. Katan, O.
Mongin, M. Blanchard-Desce, ChemPhysChem 2007, 8, 723–
734.
For selected examples, see: a) M. Drobizhev, A. Karotki, A.
Rebane, C. W. Spangler, Opt. Lett. 2001, 26, 1081–1083; b) M.
Drobizhev, A. Karotki, Y. Dzenis, A. Rebane, Z. Suo, C. W.
Spangler, J. Phys. Chem. B 2003, 107, 7540–7543; c) M. Drob-
izhev, A. Rebanea, Z. Suoc, C. W. Spangler, J. Lumin. 2005,
111, 291–305; d) M. Drobizhev, F. Meng, A. Rebane, Y. Ste-
panenko, E. Nickel, C. W. Spangler, J. Phys. Chem. B 2006,
110, 9802–9814.
Compound 4: Pd2(dba)3 (3 mg, 0.00326 mmol), sodium tert-butox-
ide (0.019 g, 0.196 mmol), and P(tBu)3 (1.3 mg, 0.007 mmol) were
added to a mixture of compound 16 (0.074 g, 0.083 mmol) and
compound 11 (0.45 g, 0.166 mmol) in dry toluene (15 mL), and the
resulting mixed solution was stirred at 90 °C under Ar for 12 h.
After the mixture had cooled to room temperature, H2O (ca.
100 mL) was added. The above solution was extracted with ethyl
acetate and then dried with MgSO4. After removal of the solvent,
the crude product was purified by column chromatography on silica
gel with ethyl acetate/hexane (1:30) as eluent to give the final puri-
[6]
[7]
1
fied product in a yield of ca. 50% (0.386 g). H NMR (300 MHz,
CDCl3): δ = 8.15–8.10 (m, 8 H), 7.74, 7.72 (d, J = 7.8 Hz, 4 H),
7.61, 7.58 (d, J = 7.8 Hz 4 H), 7.51, 7.48 (d, J = 7.8 Hz, 16 H),
7.72–7.22 (m, 56 H), 7.13–7.10 (m, 42 H), 7.05–6.97 (m, 34 H),
2.08–1.76 (m, 56 H), 1.25–1.08 (m, 168 H), 0.86–0.72 (m, 140 H)
ppm. 13C NMR (300 MHz, CDCl3): δ = 165.12, 152.75, 151.95,
151.86, 151.17, 148.34, 148.00, 146.50, 146.18, 144.69, 136.27,
136.21, 134.02, 129.09, 126.13, 123.81, 123.61, 123.44, 122.32,
121.31, 121.03, 119.79, 119.55, 119.22, 118.63, 116.96, 55.06, 40.18,
31.65, 29.64, 23.92, 22.55, 14.07 ppm. HRMS: calcd. for
For selected examples, see: a) K. D. Belfield, D. J. Hagan, E. W.
Van Stryland, K. J. Schafer, R. A. Negres, Org. Lett. 1999, 1,
1575–1578; b) K. D. Belfield, A. R. Morales, J. M. Hales, D. J.
Hagan, E. W. V. Stryland, V. M. Chapela, J. Percino, Chem.
Mater. 2004, 16, 2267–2273; c) K. D. Belfield, A. R. Morales,
B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland,
V. M. Chapela, J. Percino, Chem. Mater. 2004, 16, 4634–4641;
d) S. Yao, K. D. Belfield, J. Org. Chem. 2005, 70, 5126–5132;
e) K. D. Belfield, M. V. Bondar, F. E. Hernandez, O. V. Przhon-
ska, J. Phys. Chem. C 2008, 112, 5618–5622.
C
448H529N16O [M + H]+ 6149.1757; found 6149.0358.
Supporting Information (see footnote on the first page of this arti-
cle): Optical experiment details.
[8]
For selected examples, see: a) Y. Wang, G. S. He, P. N. Prasad,
T. Goodson III, J. Am. Chem. Soc. 2005, 127, 10128–10129; b)
A. Bhaskar, G. Ramakrishna, Z. Lu, R. Twieg, J. M. Hales,
D. J. Hagan, E. V. Stryland, T. Goodson III, J. Am. Chem. Soc.
2006, 128, 11840–11849; c) A. Bhaskar, R. Guda, M. M. Haley,
T. Goodson III, J. Am. Chem. Soc. 2006, 128, 13972–13973; d)
G. Ramakrishna, T. Goodson III, J. Phys. Chem. A 2007, 111,
993–1000; e) A. Bhaskar, G. Ramakrishna, K. Hagedorn, O.
Varnavski, E. Mena-Osteritz, P. Ba1uerle, T. Goodson III, J.
Phys. Chem. B 2007, 111, 946–954; f) O. Varnavski, X. Yan, O.
Mongin, M. Blanchard-Desce, T. Goodson III, J. Phys. Chem.
C 2007, 111, 149–162; g) M. Williams-Harry, A. Bhaskar, G.
Ramakrishna, T. Goodson III, M. Imamura, A. Mawatari, K.
Nakao, H. Enozawa, T. Nishinaga, M. Iyoda, J. Am. Chem.
Soc. 2008, 130, 3252–3253.
Acknowledgments
We thank the National Science Council (NSC), Taiwan for finan-
cial support.
[1] M. Göppert-Mayer, Ann. Phys. 1931, 9, 273–295.
[2] W. Kaiser, C. G. B. Garret, Phys. Rev. Lett. 1961, 7, 229–231.
[3] For recent reviews, see: a) M. Pawlicki, H. A. Collins, R. G.
Denning, H. L. Anderson, Angew. Chem. 2009, 121, 3292; An-
gew. Chem. Int. Ed. 2009, 48, 3244–3266; b) M. Rumi, S. Bar-
low, J. Wang, J. W. Perry, S. R. Marder, Adv. Polym. Sci. 2008,
213, 1–95; c) K. D. Belfield, S. Yao, M. V. Bondar, Adv. Polym.
Sci. 2008, 213, 97–156; d) C. W. Spangler, J. Mater. Chem.
1999, 9, 2013–2020; e) G. S. He, L.-S. Tan, Q. Zheng, P. N.
Prasad, Chem. Rev. 2008, 108, 1245–1330; f) T.-C. Lin, S.-J.
Chung, K.-S. Kim, X. Wang, G. S. He, J. Swiatkiewicz, H. E.
Pudavar, P. N. Prasad, Adv. Polym. Sci. 2003, 161, 157–193.
[4] For selected examples, see: a) M. Albota, D. Beljonne, J.-L.
Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Ko-
gej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W.
Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X.-
L. Wu, C. Xu, Science 1998, 281, 1653–1656; b) M. Rumi, J. E.
Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D.
McCord-Maughon, T. C. Parker, H. Röel, S. Thayumanavan,
S. R. Marder, D. Beljonne, J.-L. Brédas, J. Am. Chem. Soc.
2000, 122, 9500–9510; c) S.-J. Chung, M. Rumi, V. Alain, S.
Barlow, J. W. Perry, S. R. Marder, J. Am. Chem. Soc. 2005, 127,
10844–10845; d) S.-J. Chung, S. Zheng, T. Odani, L. Beverina,
J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K.
Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. V. Stry-
[9]
For selected examples, see: a) B. A. Reinhardt, L. L. Brott, S. J.
Clarson, A. G. Dillard, J. C. Bhatt, R. Kannan, L. Yuan, G. S.
He, P. N. Prasad, Chem. Mater. 1998, 10, 1863–1874; b) R.
Kannan, G. S. He, L. Yuan, F. Xu, P. N. Prasad, A. G. Dom-
broskie, B. A. Reinhardt, J. W. Baur, R. A. Vaia, L.-S. Tan,
Chem. Mater. 2001, 13, 1896–1904; c) R. Kannan, G. S. He, T.-
C. Lin, P. N. Prasad, R. A. Vaia, L.-S. Tan, Chem. Mater. 2004,
16, 185–194; d) K. A. Nguyen, J. E. Rogers, J. E. Slagle, P. N.
Day, R. Kannan, L.-S. Tan, P. A. Fleitz, R. Pachter, J. Phys.
Chem. A 2006, 110, 13172–13182; e) S.-J. Chung, K.-S. Kim,
T.-C. Lin, G. S. He, J. Swiatkiewicz, P. N. Prasad, J. Phys.
Chem. B 1999, 103, 10741–10745; f) T.-C. Lin, G. S. He, P. N.
Prasad, L.-S. Tan, J. Mater. Chem. 2004, 14, 982–991; g) T.-C.
Lin, G. S. He, Q. Zheng, P. N. Prasad, J. Mater. Chem. 2006,
16, 2490–2498; h) T.-C. Lin, C.-S. Hsu, C.-L. Hu, Y.-F. Chen,
W.-J. Huang, Tetrahedron Lett. 2009, 50, 182–185; i) T.-C. Lin,
Y.-F. Chen, C.-L. Hu, C.-S. Hsu, J. Mater. Chem. 2009, 19,
1744
www.eurjoc.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2012, 1737–1745