MHz, CDCl3) 146.6 (s), 129.4 (d), 117.1 (d), 112.0 (d), 92.8 (ddd, 1JCF 180,
The use of 5c (220 to 20 °C over 12 h) afforded 2,3-epoxyger-
aniol (87%) in 10% ee in favour of the (2R,3R)-enantiomer
(entry 7). However, 5b afforded a 90% yield of 2,3-epoxyger-
aniol 7 in 66% ee in favour of the (2R,3R)-enantiomer (entry 5).
Entries 3–5 suggest that fluoro groups may provide greater
enantioselection than hydroxy groups (entry 2), at least in the
case of a C2 vicinal unit which is part of a heterocyclic ring. The
reversal of the major enantiomer of 2,3-epoxygeraniol when
using catalyst 3 compared with catalyst 5 would be expected if
the modes of binding of the hydroxy and fluoro catalysts had
important features in common. Samples of alcohol 7 were
converted into the acetate (1 equiv. Ac2O, 1 equiv. pyridine, 10
mol% DMAP in CH2Cl2 at 0 to 20 °C over 2 h), and the ee
determined by observation of 1H NMR peak of the acetate
methyl group upon treatment with Eu(hfc)3;17 the acetate (10
mg in 0.5 ml of C6D6) was treated with consecutive portions of
10–20 ml of a filtered solution of 35 mg of Eu(hfc)3 in 0.5 ml of
C6D6.
The presence of fluorine ligands in organic reactions
mediated by catalysis is an emerging area of importance.18 To
date, however, the chirality has not been a consequence of the
spatial arrangement of the fluorine atoms, but of the asymmetry
of an unrelated organic ligand (e.g. BINOL).18 Consequently,
the present examples are, to the best of our knowledge, the first
examples of asymmetric synthesis catalyzed by a compound
whose chirality depends upon organofluorine asymmetry.
In the catalytic asymmetric Sharpless epoxidation,19 free
hydroxy groups on the catalyst (dialkyl tartrate) are a pre-
requisite for enantioselectivity. In marked contrast to such
Sharpless catalysts, the difluorides 5 lack hydroxy groups and
are incapable of deprotonation that could lead to ligand
exchange, and yet 5a–c are viable catalysts for asymmetric
epoxidation.
2JCF 33), 51.6 (m); dF(564.8 MHz, CDCl3, internal CFCl3) 2190.3 (m).
1 (a) V. Aoloshonok, in Biomedical Frontiers of Fluorine Chemistry, ed.
I. Ojima, J. R. McCarthy and J. T. Welch, American Chemical Society
Symposium Series, Washington, DC, 1996, vol. 639, pp. 26–41; (b)
J. R. McCarthy, P. S. Sunkasa, D. P. Matthews, A. J. Bitonti, E. T. Jarvi,
J. S. Sabol, R. J. Resvick, E. W. Huber, W. A. van der Donk, G. Yu and
J. Stubbe, ibid., pp. 246–264; (c) M. Namchuk, C. Braun, J. D.
McCarter, and S. G. Withers, ibid., pp. 265–278; M. Namchuk, C.
Braun, J. D. McCarter and S. G. Withers, ibid., pp. 279–293.
2 P. Bravo and G. Resnati, Tetrahedron Asymmetry, 1990, 1, 661.
3 D. Bouzard, P. Dicesare, M. Essiz, J. P. Jacquet, J. R. Kiechel,
P. Remuzon, A. Weber, T. Oki, M. Masuyoshi, R. E. Kessler,
J. Fungtomc and J. Desiderio, J. Med. Chem., 1990, 33, 1344.
4 (a) J. T. Welch and S. Eswarakrishnan, Fluorine in Bio-organic
Chemistry, Wiley, New York, 1991; (b) J. A. Wilkinson, Chem. Rev.,
1992, 92, 505.
5 E. Kun, E. Kirsten and M. L. Sharma, Proc. Natl. Acad. Sci. USA, 1977,
74, 4942.
6 H. Liu and H. Nohira, Liq. Crystal., 1996, 581.
7 C. K. Chen, Y. L. Hu, M. Spears, J. W. Hodby, B. M. Wanklyn,
A. V. Narlikar and S. B. Samanta, J. Mater. Sci. Lett., 1996, 15, 886.
8 H. Plenio, R. Diodone and D. Badura, Angew. Chem., Int. Ed. Engl.,
1997, 36, 156.
9 For a single example of a racemic vic-difluoro-2,3-dihydrobenzo[b]
furan, see: R. Ruzziconi and G. V. Sebastiani, J. Heterocycl. Chem.,
1980, 17, 1147.
10 For meso-difluorides see: (a) M. Hudlicky, J. Fluorine Chem., 1987, 36,
373; (b) A. Baklouti and R. El Gharbi, J. Fluorine Chem., 1979, 13, 297;
(c) T. B. Patrick, S. Khazaeli, S. Nadji, K. Hering-Smith and D. Reif,
J. Org. Chem., 1993, 58, 705; (d) G. A. Olah, J. T. Welch, Y. D. Vankar,
M. Nojima, I. Kerekes and J. A. Olah, J. Org. Chem., 1979, 44, 3872.
11 S. Rozen and M. Brand, J. Org. Chem., 1986, 51, 3607.
12 M. Sato, T. Hirokawa, A. Hattori, A. Toyota and C. Kaneko,
Tetrahedron: Asymmetry, 1994, 5, 975.
Compounds 5a and 5c are particularly suitable substructures
for liquid crystal applications, and difluoropyrrolidines 5 and
their derivatives are currently being evaluated for use as liquid
crystals and other new materials; additional catalytic processes
are also under investigation.
Support from the EPSRC for a studentship (to R. C. M.)
under the ROPA initiative is gratefully acknowledged.
13 W. J. Middleton, J. Org. Chem., 1975, 40, 574; M. Hudlicky, Org.
React., 1988, 35, 513.
14 D. F. Shellhamer, D. T. Austine, K. M. Gallego, B. R. Ganesh,
A. A. Hanson, K. A. Hanson, R. D. Henderson, J. M. Prince and
V. L. Heasley, J. Chem. Soc., Perkins Trans. 2, 1995, 861.
15 (a) A. I. Burmakov, L. A. Motnyak, B. V. Kunshenko, L. A. Alexeva
and L. M. Yagupolskii, J. Fluorine Chem., 1981, 19, 151; (b) for a
racemic route to mixtures of difluorosuccinic acid derivatives from
maleic anhydride and F2, see: R. G. Syvret, D. L. Vassilaros,
D. M. Parees and G. P. Pez, J. Fluorine Chem., 1994, 67, 277.
16 R. L. Shriner and C. L. Furrow, Org. Synth., 1963, Coll. Vol. IV,
242.
Notes and References
† E-mail: c.m.marson@qmw.ac.uk.
‡ All compounds gave satisfactory spectral data (NMR, IR, MS), and all
new compounds gave satisfactory elemental analyses or HRMS. Selected
data for 4a: prisms, mp 126.5–127 °C (hexane), [a]D +46.2 (c 1, CHCl3);
dH(250 MHz, CDCl3) 7.30 (m, 2 H), 6.88 (t, J 9.0, 1 H), 6.60 (d, J 9.0 2 H),
5.52 (t, J 2.5, 2 H) 3.95 (dd, J 11.0, 5.0, 2 H), 3.65 (dd, J 11.0, 3.0, 2 H); dC
(62.2 MHz, CDCl3) 145.5 (d), 129.7 (d), 118.9 (s), 118.5 (q), 112.6 (d), 85.4
(d), 51.3 (t). For 5a: needles, mp 89.5 °C (hexane), [a]D 240.6 (c 3.5,
CHCl3); dH(600 MHz, CDCl3) 7.30 (m, 2 H), 6.76 (t, J 7.0, 1 H), 6.60 (d,
J 7.0, 2 H), 5.30 (dm, 2JHF 49.3, 3JHF 12.6, 2 H), 3.70 (m, 4 H); dC(150.9
17 Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune and
K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765.
18 R. O. Duthaler and A. Hafner, Angew. Chem., Int. Ed. Engl., 1997, 36,
43.
19 T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 1980, 102, 5974.
Received in Liverpool, UK, 2nd March 1998; 8/01718B
1224
Chem. Commun., 1998