Stern–Volmer quenching constant of the coumarin-containing
complex is 12-fold of the model complex. Good photostability was
observed for the complexes during the luminescent oxygen sensing
experiments. Our strategy of directly attaching a fluorophore to
Pt(II) atom via an acetylide linker to access Pt(II) complexes with
intense absorption in the visible region and long-lived emissive 3IL
excited state (ligand phosphorescence) will be useful for design of
light-harvesting transition metal complexes and for applications
in photovoltaics, in photocatalysis and in upconversions materials,
etc.
15 H. Guo, S. Ji, W. Wu, W. Wu, J. Shao and J. Zhao, Analyst, 2010, 135,
2832.
16 S. Goeb, A. A. Rachford and F. N. Castellano, Chem. Commun., 2008,
814.
17 S. Goeb Rachford, R. Ziessel and F. N. Castellano, Inorg. Chem., 2008,
47, 4348.
18 Q. Yang, L. Wu, Z. Wu, L. Zhang and C. Tung, Inorg. Chem., 2002, 41,
5653.
19 I. E. Pomestchenko, C. R. Luman, M. Hissler, R. Ziessel and Felix N.
Castellano, Inorg. Chem., 2003, 42, 1394.
20 E. O. Danilov, I. E. Pomestchenko, S. Kinayyigit, P. L. Gentili, M.
Hissler, R. Ziessel and F. N. Castellano, J. Phys. Chem. A, 2005, 109,
2465.
21 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.
R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson,
H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J.
Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,
M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.
E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.
Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas,
J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, GAUSSIAN 09
(Revision A.1), Gaussian, Inc., Wallingford, CT, 2009.
22 (a) N. C. Lim, J. V. Schuster, M. C. Porto, M. A. Tanudra, L. L Yao,
H. C. Freake and C. Bruckner, Inorg. Chem., 2005, 44, 2018; (b) J. Yao,
W. Dou, W. Liu and J. Zheng, Inorg. Chem. Commun., 2009, 12, 430.
23 S. M. Borisov and I. Klimant, Anal. Chem., 2007, 79, 7501.
24 C. Ulbricht, N. Rehmann, E. Holder, D. Hertel, K. Meerholz and U.
S. Schubert, Macromol. Chem. Phys., 2009, 210, 531.
Acknowledgements
We thank the NSFC (20972024 and 21073028), the Fundamental
Research Funds for the Central Universities (DUT10ZD212 and
DUT11LK19), Ministry of Education (SRFDP-200801410004
and NCET-08-0077), the Royal Society (UK) and NSFC (China-
UK Cost-Share Science Networks, 21011130154), the Education
Department of Liaoning Province (2009T015) and State Key
Laboratory of Fine Chemicals (KF0802) for financial support.
Notes and references
1 J. A. G. Williams, Top. Curr. Chem., 2007, 281, 205.
2 (a) M. Hissler, A. Harriman, A. Khatyr and R. Ziessel, Chem.–Eur. J.,
1999, 5, 3366; (b) F. Nastasi, F. Puntoriero, S. Campagna, J.-H. Olivierb
and R. Ziessel, Phys. Chem. Chem. Phys., 2010, 12, 7392.
3 (a) Y. Liu and K. Schanze, Inorg. Chem., 2005, 44, 4055; (b) C. She,
A. A. Rachford, X. Wang, S. Goeb, A. O. El-Ballouli, F. N. Castellano
and J. T. Hupp, Phys. Chem. Chem. Phys., 2009, 11, 8586; (c) S. C. F.
Kui, Y.-C. Law, G. S. M. Tong, W. Lu, M.-Y. Yuen and C.-M. Che,
Chem. Sci., 2011, 2, 221.
25 J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau
and M. E. Thompson, Inorg. Chem., 2002, 41, 3055.
26 O. A. Rodionova, M. V. Puzyk and K. P. Balashev, Opt. Spectrosc.,
2008, 105, 62.
4 (a) T. J. Wadas, R. J. Lachicotte and R. Eisenberg, Inorg. Chem., 2003,
42, 3772; (b) J. Ni, L.-Y. Zhang, H.-M. Wen and Z.-N. Chen, Chem.
Commun., 2009, 3801; (c) P.-H. Lanoe¨, H. L. Bozec, J. A. Gareth
Williams, J.-L. Fillaut and V. Guerchais, Dalton Trans., 2010, 39, 707;
(d) G.-J. Zhou and W.-Y. Wong, Chem. Soc. Rev., 2011, 40, 254.
5 I. V. Sazanovich, M. A. H. Alamiry, J. Best, R. D. Bennett,O. V.
Bouganov, E. S. Davies, V. P. Grivin, A. J. H. M. Meijer, V. F. Plyusnin,
K. L. Ronayne, A. H. Shelton, S. A. Tikhomirov, M. Towrie and J. A.
Weinstein, Inorg. Chem., 2008, 47, 10432.
27 F. N. Castellano, I. E. Pomestchenko, E. Shikhova, F. Hua, M. L. Muro
and N. Rajapakse, Coord. Chem. Rev., 2006, 250, 1819.
28 P. H. Lanoe, J. L. Fillaut, L. Toupet, J. A. G. Williams, H. L. Bozec and
V. Guerchais, Chem. Commun., 2008, 4333.
29 N. Armaroli, ChemPhysChem, 2008, 9, 371.
30 F. Q. Guo and W. F. Sun, Inorg. Chem., 2005, 44, 4055.
31 X. Han, L. Z. Wu, G. Si, J. Pan, Q. Z. Yang, L. P. Zhang and C. H.
Tung, Chem.–Eur. J., 2007, 13, 1231.
32 M. D. Perez, P. I. Djurovich, A. Hassan, G. Y. Cheng, T. J. Stewart,
K. Aznavour, R. Bauz and M. E. Thompson, Chem. Commun., 2009,
4215.
6 C. E. Whittle, J. A. Weinstein, M. W. George and K. S. Schanze, Inorg.
Chem., 2001, 40, 4053.
7 M. Hissler, W. B. Connick, D. K. Geiger, J. E. McGarrah, D. Lipa, R.
J. Lachicotte and R. Eisenberg, Inorg. Chem., 2000, 39, 447.
8 (a) J. A. Aligo, L. Smith, J. L. Eglin and L. E. Pence, Inorg. Chem.,
2005, 44, 4001; (b) I. E. Pomestchenko and F. N. Castellano, J. Phys.
Chem. A, 2004, 108, 3485.
9 A. A. Rachford, S. Goeb and F. N. Castellano, J. Am. Chem. Soc., 2008,
130, 2766.
10 S. Ji, W. Wu, W. Wu, P. Song, K. Han, Z. Wang, S. Liu, H. Guo and J.
Zhao, J. Mater. Chem., 2010, 20, 1953.
11 S. Ji, W. Wu, W. Wu, H. Guo and J. Zhao, Angew. Chem., Int. Ed., 2011,
50, 1626.
12 W. Wu, W. Wu, S. Ji, H. Guo, P. Song, K. Han, L. Chi, J. Shao and J.
Zhao, J. Mater. Chem., 2010, 20, 9775.
13 W. Wu, W. Wu, S. Ji, H. Guo and J. Zhao, Eur. J. Inorg. Chem., 2010,
4470.
14 Maria L. Muro-Small Guo, S. M. Ji, J. Z. Zhao and Felix N. Castellano,
Inorg. Chem., 2010, 49, 6802.
33 J. E. McGarrah and R. Eisenberg, Inorg. Chem., 2003, 42, 4355.
34 F. Hua, S. Kinayyigit, A. A. Rachford, E. A. Shikhova, S. Goeb, J.
R. Cable, C. J. Adams, K. Kirschbaum, A. A. Pinkerton and F. N.
Castellano, Inorg. Chem., 2007, 46, 8771.
35 T. N. Singh-Rachford and F. N. Castellano, Coord. Chem. Rev., 2010,
254, 2560.
36 A. Monguzzi, J. Mezyk, F. Scotognella, R. Tubino and F. Meinardi,
Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 78, 195112–1.
37 A. Monguzzi, R. Tubino and F. Meinardi, Phys. Rev. B: Condens.
Matter Mater. Phys., 2008, 77, 155122–1.
38 R. R. Islangulov, D. V. Kozlov and F. N. Castellano, Chem. Commun.,
2005, 3776.
39 P. W. Du and R. Eisenberg, Chem. Sci., 2010, 1, 502.
40 (a) O. Wolfbeis and R. Narayanaswamy, Optical sensors: Industrial,
Environmental and Diagnostic Applications, Springer-Verlag, Berlin-
Heidelberg, 2004; (b) J. R. Lakowicz, Principles of Fluorescence
Spectroscopy, Kluwer Academic, New York, 2nd edn, 1999.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 7834–7841 | 7841
©