ORGANIC
LETTERS
2007
Vol. 9, No. 17
3299-3302
[Cp*IrCl2]2-Catalyzed Indirect
Functionalization of Alcohols: Novel
Strategies for the Synthesis of
Substituted Indoles
Simon Whitney,† Ronald Grigg,*,† Andrew Derrick,‡ and Ann Keep§
Molecular, InnoVation, DiVersity and Automated Synthesis (MIDAS) Centre,
Department of Chemistry, UniVersity of Leeds, Leeds LS2 9JT, United Kingdom
Received May 30, 2007
ABSTRACT
We report novel iridium(III)-catalyzed reactions that afford substituted indoles via the indirect functionalization of alcohols via C-3 selective
alkylation of indoles with alcohols and a one-pot cascade strategy from amino- or nitro-phenyl ethyl alcohols, which incorporates oxidative
cyclization and C-3 alkylation.
The indole ring is a privileged structure found in many
structurally diverse natural products and pharmaceutical
agents,1 and new methods for indole synthesis and function-
alization continue to attract attention.2,3
Increasing demand for environmentally benign processes
has focused attention on transition metal catalyzed processes.
We have a long-standing interest in direct catalytic alkylation
with alcohols, which offers an attractive green chemistry
solution due to its high atom efficiency.4 Recent work in
this area includes R-alkylation of ketones with alcohols,5
indirect Wittig reactions with alcohols,6 and several publica-
tions utilizing [Cp*IrCl2]2 in reactions of this type,7a including
the direct â-alkylation of secondary alcohols with primary
alcohols.7b
Previously we have shown the high activity of transition
metal catalysts and in particular [Cp*IrCl2]2 in the monoalkyl-
ation of arylacetonitriles8 and barbituric acid9 with alcohols.
As part of our ongoing interest in this area, we report two
related [Cp*IrCl2]2-catalyzed cascade reactions that afford
substituted indoles.
(4) (a) Bibby, C. E.; Grigg, R.; Price, R. J. Chem. Soc., Dalton Trans.
1977, 872. (b) Grigg, R.; Mitchell, T. R. B.; Sutthivaiyakit, S. Tetrrahedron
Lett. 1979, 20, 1067. (c) Grigg, R.; Mitchell, T. R. B.; Sutthivaiyakit, S.;
Tongpenyai, N. J. Chem. Soc., Chem. Commun. 1981, 611. (d) Grigg, R.;
Mitchell, T. R. B.; Sutthivaiyakit, S. Tetrahedron 1981, 37, 4313.
(5) Taguchi, K.; Nakagawa, H.; Hirabayashi, T.; Sakaguchi, S.; Ishii,
Y. J. Am. Chem. Soc. 2004, 126, 72.
† University of Leeds.
‡ Pfizer Ltd., Chemical Research and Development, Ramsgate Road,
Sandwich, Kent CT13 9NJ, U.K.
§ Johnson Matthey, Orchard Road, Royston, Hertfordshire SG8 5HE,
U.K.
(6) Edwards, M. G.; Williams, J. M. J. Angew. Chem., Int. Ed. 2002,
41, 4740.
(1) Feniuk, W.; Humphrey, P. P. A. Drug DeV. Res. 1992, 26, 235.
(2) For reviews on the synthesis of indoles, see: (a) Humphrey, G. R.;
Kuethe, J. T. Chem. ReV. 2006, 106, 2875. (b) Gilchrist, T. L. J. Chem.
Soc., Perkin Trans. 1 2001, 2491. (c) Gribble, G. W. J. Chem. Soc., Perkin
Trans. 1 2000, 1045. (d) Pindur, U.; Adam, R. J. Heterocycl. Chem. 1988,
25, 1. (e) Kuethe, J. T. Chimia 2006, 50, 543.
(7) (a) Fujita, K.; Yamaguchi, R. Synlett. 2005, 560. (b) Fujita, K.; Asai,
C.; Yamaguchi, T.; Hanasaka, F.; Yamaguchi, R. Org. Lett. 2005, 7, 4017.
(8) (a) Grigg, R.; Mitchell, T. R. B.; Sutthivaiyakit, S.; Tongpenyai, N.
Tetrahedron Lett. 1981, 22, 4107. (b) Lofberg, C.; Grigg, R.; Whittaker,
M.; Keep, A.; Derrick, A. J. Org. Chem. 2006, 71, 8023.
(9) Lofberg, C.; Grigg, R.; Keep, A.; Derrick, A.; Sridharan, V.; Kilner,
C. Chem. Commun. 2006, 5000.
(3) Robinson, B. The Fischer Indole Synthesis; Wiley-Interscience: New
York, 1982.
10.1021/ol071274v CCC: $37.00
© 2007 American Chemical Society
Published on Web 07/21/2007