10.1002/anie.201804479
Angewandte Chemie International Edition
COMMUNICATION
2012, 51, 11354; Angew. Chem. 2012, 124, 11516; d) T. Thaler, B.
Haag, A. Gavryushin, K. Schober, E. Hartmann, R. M. Gschwind, H.
Zipse, P. Mayer, P. Knochel, Nat. Chem. 2010, 2, 125; e) Y. Yang, K.
Niedermann, C. Han, S. L. Buchwald, Org. Lett. 2014, 16, 4638; f) C.
Han, S. L. Buchwald, J. Am. Chem. Soc. 2009, 131, 7532; g) A.
Krasovskiy, C. Duplais, B. H. Lipshutz, J. Am. Chem. Soc. 2009, 131,
15592; h) A. Joshi-Pangu, M. Ganesh, M. Biscoe, Org. Lett. 2011, 13,
1218; i) D. Hass, J. M. Hammann, R. Greiner, P. Knochel, ACS Catal.
2016, 6, 1540.
Kuniyasu, N. Kambe, Org. Lett. 2016, 18, 4868; n) H. Shi, W. Dai, B.
Wang, S. Cao, Organometallics, 2018, 37, 459; o) T. Iwasaki, K.
Okamoto, H. Kuniyasu, N. Kambe, Chem. Lett. 2017, 46, 1504; p) T.
Chu, Y. Boyko, I. Korobkov, G. I. Nikonov, Organometallics 2015, 34,
5363; q) H. Ogawa, Z. –K. Yang, H. Minami, K. Kojima, T. Saito, C.
Wang, M. Uchiyama, ACS Catal. 2017, 7, 3988.
[10] 4-chlorotoluene ($55/mol) vs 4-fluorotoluene ($39/mol). Price retrieved
[11] For selected examples on catalytic C–F functionalization using
unactivated fluoroarenes, see: a) J. W. Dankwadrt, J. Organomet.
Chem. 2005, 690, 932; b) N. Yoshikai, H. Mashima, E. Nakamura, J.
Am. Chem. Soc. 2005, 127, 17978; c) L. Ackermann, R. Bom, J. H.
Spatz, D. Meyer, Angew. Chem. Int. Ed. 2005, 44, 7216; Angew. Chem.
2005, 117, 7382; d) M. Tobisu, T. Xu, T. Shimasaki, N. Chatani, J. Am.
Chem. Soc. 2011, 133, 19505; e) V. P. W. Böhm, C. W. K. Gstöttmayr,
T. Weskamp, W. A. Hermann, Angew. Chem. Int. Ed. 2001, 40, 3387;
Angew. Chem. 2001, 113, 3500; f) F. Mongin, L. Mojovic, B. Gillamet, F.
Trecourt, G. Queguiner, J. Org. Chem. 2002, 67, 8991; g) L. –G. Xie, Z.
–X. Wang, Chem. –Eur J. 2010, 16, 10332; h) F. Zhu, Z. –X. Wang, J.
Org. Chem 2014, 79, 4285; i) W. –J. Guo, Z. –X. Wang, J. Org. Chem.
2013, 78, 1054; j) T. Kom, M. A. Schade, S. Wirth, P. Knochel, Org Lett.
2006, 8, 726; k) T. Niwa, H. Ochiai, Y. Watanabe, T. Hosoya, J. Am.
Chem. Soc. 2015, 137, 14313; l) F. Zhu, Z. –X. Wang, Adv. Synth.
Catal. 2013, 355, 3694; m) X. –W. Liu, J. Echavarren, C. Zarate, R.
Martin, J. Am. Chem. Soc. 2015, 137, 12470.
[5]
For selected examples of transition-metal catalyzed couplings with
secondary Grignards, see: a) K. Tamao, Y. Kiso, K. Sumitami, M.
Kumada, J. Am. Chem. Soc. 1972, 94, 9268; b) T. Hayashi, M. Konishi,
Y. Kobori, M. Kumada, T. Higuchi, K. Hirotsu, J. Am. Chem. Soc. 1984,
106, 158; c) G. Consiglio, A. Indolese, J. Organometal. Chem. 1991,
417, C36; d) I. Kalvet, T. Sperger, T. Scattolin, G. Magnin, F.
Schoenebeck, Angew. Chem. Int. Ed. 2017, 56, 7078; Angew. Chem.
2017, 129, 7184; e) C. A. Busacca, M. C. Eriksson, R. Fiaschi,
Tetrahedron Lett. 1999, 40, 3101; f) S. Kanemura, A. Kondoh, H.
Yorimitsu, K. Oshima, Synthesis, 2008, 16, 2659; g) C. E. I. Knappke, A.
J. von Wangelin, Chem. Soc. Rev. 2011, 40, 4948; h) A. H. Cherney,
Kadunce, N. T.; S. E. Reisman, Chem. Rev. 2015, 115, 9587 and
references therein.
[6]
For examples of transition-metal catalyzed couplings with secondary
alkylboron nucleophiles, see: a) S. D. Dreher, P. G. Dormer, D. L.
Sandrock, G. A. Molander, J. Am. Chem. Soc. 2008, 130, 9257; b) L. Li,
S. Zhao, A. Joshi-Pangu, M. Diane, M. R. Biscoe, J. Am. Chem. Soc.
2014, 136, 14027 c) A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc.
2000, 122, 4020; d) N. Kataoka, Q. Shelby, J. Stambuli, J. F. Hartwig, J.
Org. Chem. 2002, 67, 5553; e) A. van den Hoogenband, J. H. M. Lange,
J. W. Terpstra, M. Koch, G. M. Visser, M. Visser, T. J. Korstanje, J. T. B.
H. Jastrzebski, Tetrahedron. Lett. 2008, 49, 4122; f) D. Imao, B. W.
Glassspoole, V. S. Laberge, C. M. Crudden, J. Am. Chem. Soc. 2009,
131, 5024; g) M. Rubina, M. Rubin, V. Gevorgyan, J. Am. Chem. Soc.
2003, 125, 7198; h) H. Doucet, Eur. J. Org. Chem. 2008, 2013; i) J. P.
Hildebrand, S. P. Marsden, Synlett, 1996, 9, 893; j) J. P. G. Rygus, C.
M. Crudden, J. Am. Chem. Soc. 2017, 139, 18124; k) J. Li, M. D. Burke,
J. Am. Chem. Soc. 2011, 133, 13774; l) L. Chausset-Boissarie, K.
Ghozati, E. LaBine, J. L. –Y. Chen, V. Aggarwal, C. M. Crudden, Chem.
‒Eur. J. 2013, 19, 17698.
[12] Y. Kiso, K. Tamao, M. Kumada, J. Organomet. Chem. 1973, 50, C12.
[13] For a single specific example using iPrLi, see: D. Heijnen, J. –B.
Gualtierotti, V. Homillos, B. L. Feringa, Chem. –Eur. J. 2016, 22, 3991.
[14] See Supporting Information for details.
[15] a) J. E: Marcone, K. G. Moloy, J. Am. Chem. Soc. 1998, 120, 8527; b)
K. L. Arthur, Q. L. Wang, D. M. Bregel, N. A. Smythe, B. A. O’Neill, K. I.
Goldberg, K. G. Moloy, Organometallics 2005, 24, 4624; c) J. A. van
Rijn, M. A. Siegler, A. L. Spek, E. Bouwman, E. Drent, Organometallics,
2009, 28, 7006.
[16] For examples on the nature of gem-dialkyl compression effects, see: a)
M. S. Newman, R. J. Harper, J. Am. Chem. Soc. 1958, 80, 6350; b) R.
F. Brown, N. M. Van Gulick, J. Org. Chem 1956, 21, 1046; c) A. L.
Ringer, D. H. Maegers, J. Org. Chem. 2007, 72, 2533; d) S. M.
Bachrach, J. Org. Chem. 2008, 73, 2466.
[7]
For reviews on C‒F activation, see: a) J. L. Kiplinger, T. G. Richmond,
C. E. Osterberg, Chem. Rev. 1994, 94, 373; b) H. Amii, K. Uneyama,
Chem. Rev. 2009, 109, 2119; c) T. Ahrens, J. Kohlmann, M. Ahrens, T.
Braun, Chem. Rev. 2015, 115, 931; d) O. Eisenstein, J. Milani, R. N.
Perutz, Chem. Rev. 2017, 117, 8710.
[17] L2, L3 and L4 could be obtained in high yield in 2 steps from the
commercially available 1,3-diol. See Supporting Information.
[18] A similar effect had been observed by Cook et al., in which FeF3 H2O
was found to be a superior catalyst in preventing isomerization events
in the coupling of secondary Grignards with activated C–O electrophiles.
T. Agrawal, S. P. Cook, Org. Lett., 2013, 15, 96.
[8]
[9]
a) M. G. Campbell, T. Ritter, Chem. Rev. 2015, 115, 612; b) T. Liang, C.
N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214; Angew.
Chem. 2013, 125, 8372.
[19] For an exceptional case study in ligand optimization for Ni-catalyzed
cross-coupling to improve synthetic methodology, see: K. Wu, A. G.
Doyle, Nat. Chem. 2017, 9, 779.
For selected examples on catalytic C–F functionalization using
activated fluoroarenes or polyfluorinated compounds, see: a) T. Braun,
R. N. Perutz, M. I. Sladek, Chem. Commun. 2001, 2254; b) T. Schaub,
M. Backes, U. Radius, J. Am. Chem. Soc. 2006, 128, 15964; c) A. D.
Sun, J. A. Love, Org. Lett. 2011, 13, 2750; d) Y. Nakamura, N. Yoshikai,
E. Nakamura, Org. Lett. 2012, 14, 3316; e) D. Yu, C. –S. Wang, C. Yao,
Q. Shen, L. Lu, Org. Lett. 2014, 16, 5544; f) T. Wang, B. J. Alfonso, J.
A. Love, Org. Lett. 2007, 9, 5629; g) J. –R. Wang, K. Manabe, Org. Lett.
2009, 11, 741; h) T. Wang, J. Love, Organometallics, 2008, 27, 3290; i)
T. Saeki, Y, Takashima, K. Tamao, Synlett, 2005, 11, 1771; j) M.
Ohash, T. Kambara, T. Hatanaka, H. Saijo, R. Doi, S. Ogoshi, J. Am.
Chem. Soc. 2011, 133, 3256; k) K. Kikushima, M. Greillier, M. Ohashi,
S. Ogoshi, Angew. Chem. Int. Ed. 2017, 56, 16191; Angew. Chem.
2017, 129, 16409; l) J. D. Weaver, S. Senaweera, Tetrahedron 2014,
70, 7413; m) T. Iwasaki, A. Fukuoka, X. Min, W. Yokoyama, H.
[20] T. T. Denton, X Zhang, J. R. Cashman, J. Med. Chem. 2005, 48, 224.
[21] a) K. Ziegler, H. Zeiser, Chem. Ber. 1930, 1847; b) K. Ziegler, H. Zeiser,
Chem. Ber. 1931, 174; c) H. G. Richey Jr., J. Farkas Jr., Tetrahedron.
Lett. 1985, 26, 275; d) H. Vorbrüggen, M. Maas, Heterocycles, 1988, 27,
2659; for a recent example, see: F. –F. Zhuo, W. –W Xie, Z. –X. Yang,
L. Zhang, P. Wang, R. Yuan, C. –S. Da, J. Org. Chem. 2013, 78, 3243.
[22] a) G. –Q. Shi, S. Takagishi, M. Schlosser, Tetrahedron 1994, 50, 1129;
b) E. Marzi, C. Bobbio, F. Cottet, M. Schlosser, Eur. J. Org. Chem.
2005, 2116.
[23] A. Fürstner, A. Leitner, M. Mendez, H. Krause, J. Am. Chem. Soc. 2002,
124, 13856.
This article is protected by copyright. All rights reserved.