I. L. Baraznenok et al. / Bioorg. Med. Chem. Lett. 15 (2005) 1637–1640
1639
Acknowledgements
O
OH
Boc
NH
b,c
7%
a
14
We would like to thank to Mr. Carl-Oscar Appelros and
Dr. Sandra Oerther for running the in vivo tests.
N
76%
Cl
N
18
20
References and notes
Scheme 4. Reagents: (a) LiBH4, MeOH, Et2O; (b) 2-chloro-5-hy-
droxypyridine, Ph3P, DEAD, THF; (c) TosOH, EtOH.
1. (a) Spande, T. F.; Garaffo, H. M.; Edwards, M. W.; Yeh,
H. J. C.; Pannell, L.; Daly, J. W. J. Am. Chem. Soc. 1992,
114, 3475; (b) Qian, C.; Li, T.; Shen, T. Y.; Libertine-
Garahan, L.; Eckman, J.; Biftu, T.; Ip, S. Eur. J.
Pharmacol. 1993, 250, R13.
2. (a) Sullivan, J. P.; Bannon, A. W. CNS Drug Rev. 1996, 2,
21; (b) Bonhaus, D. W.; Bley, K. R.; Broka, C. A.;
Fontana, D. J.; Leung, E.; Lewis, R.; Shieh, A.; Wong, E.
H. F. J. Pharmacol. Exp. Ther. 1995, 273, 1199; (c) Rao,
T. S.; Correa, L. D.; Reid, R. T.; Lloyd, G. K.
Neuropharmacology 1996, 35, 393.
ether, affording instead ring-opened product 17. An at-
tempt to deprotect 16 under basic condition (aqueous
NaOH, heating10) was also unsuccessful.
Therefore, we turned our attention to the original route,
involving coupling of pyridinol with the neopentyl-like
alcohol 18 (Scheme 4).
3. For example, see: (a) Bai, D.; Xu, R.; Chu, G.; Zhu, X. J.
Org. Chem. 1996, 61, 4600; (b) Wright, E.; Gallagher, T.;
Sharples, C.; Wonnacott, S. Bioorg. Med. Chem. Lett.
1997, 7, 2867; (c) Badio, B.; Garaffo, H. M.; Plummer, C.
V.; Padgett, W. L.; Daly, J. W. Eur. J. Pharmacol. 1997,
321, 189.
4. (a) Abreo, M. A.; Lin, N.-H.; Garvey, D. S.; Gunn, D. E.;
Hettinger, A.-M.; Wasicak, J. T.; Pavlic, P. A.; Martin, Y.
C.; Donnelly-Roberts, D. L.; Anderson, D. J.; Sullivan, J.
P.; Williams, M.; Arneric, S. P.; Holladay, M. W. J. Med.
Chem. 1996, 39, 817; (b) Koren, A. O.; Horti, A. G.;
Mukhin, A. G.; Gundisch, D.; Kimes, A. S.; Dannals, R.
F.; London, E. D. J. Med. Chem. 1998, 41, 3690; (c) Lee,
J.; Davis, C. B.; Rivero, R. A.; Reitz, A. B.; Shank, R. P.
Bioorg. Med. Chem. Lett. 2000, 10, 1063.
5. (a) Holladay, M. W.; Wasicak, J. T.; Lin, N.-H.; He, Y.;
Ryther, K. B.; Bannon, A. W.; Buckley, M. J.; Kim, D. J.
B.; Decker, M. W.; Anderson, D. J.; Campbell, J. E.;
Kuntzweiler, T. A.; Donnelly-Roberts, D. L.; Piattoni-
Kaplan, M.; Briggs, C. A.; Williams, M.; Arneric, S. P. J.
Med. Chem. 1998, 41, 407; (b) Kesingland, A. C.; Gentry,
C. T.; Panesar, M. S.; Bowes, M. A.; Vernier, J.-M.; Cube,
R.; Walker, K.; Urban, L. Pain 2000, 86, 113.
The latter was prepared in 76% yield by the reduction of
14 with LiBH4. Coupling of 14 under the Mitsunobu
conditions proceeded extremely slowly and resulted in
a very low (less than 15%) conversion of the starting
materials. Deprotection with TosOH afforded only 7%
of the desired ether 20.11 Modification of the reaction
conditions by changing the coupling reagents and their
molar ratio or by increasing the reaction temperature
did not improve the yields.
The compounds were evaluated for analgesic activity in
the mouse formalin model13 using automated video-
based analysis of the behavior. Behavior was analyzed
at two timepoints called phase I and phase II, 0–5 min
and at 15–30 min after injection of formalin. Most of the
compounds affected the general motor behavior of the
animals in such a way that calculation of a true ED50
value for analgesia was impossible (marked as Ôconfound-
ing effectsÕ in the Table 1). Only the reference compound
ABT-594 and the R isomer of 5 gave useful results indi-
cating that R-5 has favorable analgesic properties.
6. Donohoe, T. J.; Guyo, P. M. J. Org. Chem. 1996, 61,
7664.
7. Schieweck, F.; Altenbach, H.-J. Tetrahedron: Asymmetry
1998, 9, 403.
In summary, analogs of epibatidine and ABT-594 were
prepared and tested for analgesic activity. We have
demonstrated the utility of cyclic sulfamidates for the
synthesis of 2-substituted 2-aryloxymethyl- or 2-aryl-
aminomethylpyrrolines in good to excellent yields,
also when nucleophilic substitution takes place at a
neopentyl center.
8. After several weeks at room temperature previously pure 7
contained up to 40% of the single byproduct, which was
identified as 1-(tert-butoxycarbonyl)-2-methylpyrrole. We
did not investigate the mechanism of this transformation.
9. For example, see: (a) Aguilera, B.; Fernandez-Mayoralas,
A. J. Org. Chem. 1998, 63, 2719; (b) Okuda, M.; Tomioka,
K. Tetrahedron Lett. 1994, 35, 4585; (c) Boulton, L. T.;
Stock, H. T.; Raphy, J.; Horwell, D. C. J. Chem. Soc.,
Perkin Trans. 1 1999, 61, 1421.
10. Alker, D.; Doyle, K. J.; Harwood, L. M.; McGregor, A.
Tetrahedron: Asymmetry 1990, 1, 877.
11. Selected procedures and spectral data:
Table 1. Mouse formalin activities for ABT-594 and compounds 5,
10–12. Compound 20 was not tested
3a-methyl-3a,6-dihydro-3H-pyrrolo[1,2-c][1,2,3]oxathiaz-
ole 1,1-dioxide (9). Isopropyl 1-(tert-butoxycarbonyl)-2-
methyl-2,5-dihydro-1H-pyrrole-2-carboxylate (6; 12.5 g,
46 mmol) in CH2Cl2 (150 mL) was cooled to 0 ꢁC, and
methanesulfonic acid (16 mL, 245 mmol) in CH2Cl2
(50 mL) was added dropwise. The reaction mixture was
stirred for 12 h while gradually warming to room temper-
ature. A solution of 1 N HCl (100 mL) was added, the
organic layer was separated and washed with 1 N HCl
(50 mL). Combined aqueous layers were washed with
Et2O (100 mL), basified (pH 8) with solid NaHCO3, and
Compds
Doses given
(sc)
ED50 Ph I,
lmol/kg
ED50 Ph II,
lmol/kg
ABT-594
R-5
S-5
0.4–3.1
0.4–6.3
0.4–6.3
0.4–6.3
0.4–6.3
0.4–6.3
0.4–6.3
0.9
0.8
1.6
1.6
c.e.a
c.e.a
c.e.a
c.e.a
c.e.a
c.e.a
c.e.a
c.e.a
c.e.a
c.e.a
10
(+)-11
(À)-11
12
a c.e.—confounding effects.