Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C6CC05707A
COMMUNICATION
Journal Name
Mater., 2014, 26, 1642; (d) R. Qian, L. Ding, L. Yan, M. Lin, H.
Ju, J. Am. Chem. Soc., 2014 , 136, 8205.
(a) D. Ye, A. J. Shuhendler, L. Cui, L. Tong, S. S. Tee, G.
Tikhomirov, D. W. Felsher, J. Rao, Nat. Chem., 2014, 6, 519;
(b) D. Zhang, G. B. Qi, Y. X. Zhao, S. L. Qiao, C. Yang, H. Wang,
Adv. Mater., 2015, 27, 6125.
(a) Y. Bae, S. Fukushima, A. Harada, K. Kataoka, Angew. Chem.
Int. Ed., 2003, 42, 4640; (b) J. Y. Liu, W. Huang, Y. Pang, P.
Huang, X. Y. Zhu, Y. F. Zhou, D. Y. Yan, Angew. Chem. Int. Ed.,
2011, 50, 9162; (c) C. Wang, L. Xu, C. Liang, J. Xiang, R. Peng,
Z. Liu, Adv. Mater., 2014, 26, 8154.
(a) J. Zhou, X. W. Du, N. Yamagata, B. Xu, J. Am. Chem. Soc.,
2016 , 138, 3813; (b) Y. Kuang, J. Shi, J. Li, D. Yuan, K. A.
Alberti, Q. Xu, B. Xu, Angew. Chem., Int. Ed., 2014, 53, 8104;
(c) J. F. Shi,; X. W. Du, D. Yuan, J. Zhou, N. Zhou, Y. B. Huang,
B. Xu, Biomacromolecules, 2014, 15, 3559; (d) Y. Gao, J. F.
living HepG2 cells without Gal-BHMC incubation did not
contain nanofibers by TEM (Figure S32). Furthermore, the
HepG2 cells were harvested and lysed in dimethyl sulfoxide to
dissolve the organic compounds from the cells for HPLC
analysis. 4e The intracellular concentration of BHMC and Gal-
BHMC in HepG2 cells were also showed in Table S3. The result
indicated that the intracellular concentration of BHMC (290
μM) in HepG2 cells was over the critical aggregation
concentration (120 μM) and BHMC would self-assemble to
form nanofibers. These results supported our hypothesis that
the cell death was induced by the formation of intracellular
self-assembly of BHMC cleaved from Gal-BHMC precursors.6
2
3
4
Shi, D. Yuan, B. Xu, Nat. Commun., 2012, 3, 1033; (e) Z. M.
Yang, G. L. Liang, Z. F. Guo, Z. H. Guo, B. Xu, Angew. Chem.,
Int. Ed., 2007, 46, 8216.
5
(a) R. A. Pires, Y. M. Abul-Haija, D. S. Costa, R. Novoa-
Carballal, R. L. Reis, R. V. Ulijn, I. Pashkuleva, J. Am. Chem.
Soc., 2015, 137, 576; (b) S. Fleming, R. V. Ulijn, Chem. Soc.
Rev., 2014, 43, 8150.
6
7
A. Tanaka, Y. Fukuoka, Y. Morimoto, T. Honjo, D. Koda, M.
Goto, T. Maruyama, J. Am. Chem. Soc., 2015, 137, 770.
(a) C. Yang, M. Bian, Z. Yang, Biomater. Sci., 2014, 2, 651; (b)
C. Ren, J. Zhang, M. Chen, Z. Yang, Chem. Soc.
Rev., 2014, 43, 7257.
Fig. 4 TEM image of the lysate of dead HepG2 cells with the self-assembled
nanofibers as dedicated by arrows Scale bars represent 100 nm.
8
9
J. A. Zorn, H. Wille, D.W. Wolan, J. A. Wells, J. Am. Chem. Soc.,
2011, 133, 19630.
(a) Y. Kuang, M. J. C. Long, J. Zhou, J. F. Shi, Y. Gao, C. Xu, L.
Hedstrom, B. Xu, J. Biol. Chem., 2014, 289, 29208; (b) J. F.
Shi, B. Xu, Nano Today, 2015, 10, 615; (c) X. W. Du, J. Zhou, J.
F. Shi, B. Xu, Chem. Rev., 2015, 115, 13165.
In summary, a fluorescent and multi-functional gelator
precursor with high photosensitivity was rationally designed,
which can selectively target cancer cells through the receptor
mediated interaction between galactose and ASGP-R over-
expressed by cancer cells. Typically, the precursor can release
hydrogelators inside cells under photo-irradiation, leading to
intracellular self-assembly and subsequently inducing cell
death. Especially, coumarin derivatives have the property of
two-photon absorption, enabling to irradiate the precursors
with near infrared light (non-invasive wavelength), which is still
going on in our group. The study develops a methodology to
design multi-functional nano-materials for the purpose of
selective and efficient tumor therapeutics through precisely
releasing the assembled gelators under external stimuli. The
methodology can be further exploited in the design of similar
systems to target different cancer cells by exchanging the
galactose unit into other functional groups, which can
specifically recognize the receptors over-expressed at cell
membrane.
10 R. Cheng, F. H. Meng, C. Deng, H. A. Klok, Z. Y.
Zhong, Biomaterials, 2013, 34, 3647.
11 F. Danhier, O. Feron, V. Préat, J. Control. Release, 2010, 148
135.
12 (a) R. Schmidt, D. Geissler, V. Hagen and J. Bendig, J. Phys.
Chem. A, 2007, 111, 5768; (b) K. Katayama, S. Tsukiji, T.
Furuta, T. Nagamune, Chem. Commun., 2008, 42, 5399.
13 (a) T. Niidome, M. Urakawa, H. Sato, Y. Takahara, T. Anai, T.
Hatakayama, A. Wada, T. Hirayama, H. Aoyagi, Biomaterials,
2000, 21, 1811; (b) Y. Zou, Y. Song, W. J. Yang, F. H. Meng, H.
Y. Liu, Z. Y. Zhong, J. Control. Release, 2014, 193, 154; (c) R.
Yang, F. H. Meng, S. B. Ma, F. S. Huang, H. Y. Liu, Z. Y.
Zhong, Biomacromolecules, 2011, 12, 3047.
14 M. Hashida, M. Nishikawa, F. Yamashita, Y. Takakura, Adv.
Drug Delivery Rev., 2001, 52, 187.
15 D. J. Adams, Macromol. Biosci., 2011, 11, 160.
16 (a) Q. N. Lin, Q. Huang, C. Y. Li, C. Y. Bao, Z. Z. Liu, F. Y. Li, L. Y.
Zhu, J. Am. Chem. Soc., 2010, 132, 10645; (b) Q. N. Lin, C. Y.
Bao, S. Y. Cheng, Y. L. Yang, W. Ji, L. Y. Zhu, J. Am. Chem. Soc.,
2012, 134, 5052; (c) W. Ji, G. F. Liu, M. X. Xu, X. Q. Dou, C. L.
Feng, Chem. Commun., 2014, 50, 15545; (d) W. Ji, G. F. Liu Z.
,
We thank the NSFC (51573092, 51273111, 51173105), the
National Basic Research Program of China (973 Program
2012CB933803), the Shanghai Jiao Tong University
(SJTU)−University of Michigan (UM) Collaboraꢀve Research
Program, and the Program for Professor of Special
Appointment (Eastern Scholar) at the Shanghai Institutions of
Higher Learning.
J. Li, C. L. Feng, ACS Appl. Mater. Interf., 2016, 8, 5188; (e) X.
F. Ji, B. B. Shi, H. Wang, D. Y. Xia, K. C. Jie, Z. L. Wu, F. H.
Huang, Adv. Mater., 2015, 27, 8062; (f) G. C. Yu, K. C. Jie, F. H.
Huang, Chem. Rev., 2015, 115, 7240.
17 CCDC 1471850 (BHMC) contains the supplementary
crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
18 (a) P. Sahoo, V. G. Puranik, A. K. Patra, P. U. Sastry, P.
Notes and references
Dastidar, Soft Matter, 2011, 7, 3634.
19 K. B. Li, Y. Zang, H. Wang, J. Li, G. R. Chen, T. D. James, X. P.
He, H. Tian, Chem. Commun., 2014, 50, 11735.
1
(a) D. A. LaVan, T. McGuire, R. Langer, Nat. Biotechnol., 2003,
21, 1184; (b) O. C. Farokhzad, J. Cheng, B. A. Teply, I. Sherifi,
S. Jon, P. W. Kantoff, J. P. Richie, R. Langer, Proc. Natl. Acad.
Sci. U.S.A., 2006, 103, 6315; (c) J. Boekhoven, S. I. Stupp, Adv.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins