August 1998
SYNLETT
901
dienes. However, product distributions are complex, and a clear
structure-reactivity relationship is not evident at this stage. Two cases
illustrating this point are presented in Scheme 4 in which competing
[2+2] and [2+4] processes are observed for the reaction of 2 with 1-
methyl-4-trimethylsilyloxycyclohexa-1,3-diene and cyclohexa-1,3-
2
3
a) Kozikowski, A. P.; Floyd, W. C.; Kuniak, M. P. J. Chem. Soc.,
Chem. Commun. 1977, 582. b) Ishar, M. P. S.; Wali, A.; Ghandi,
R. P. J. Chem. Soc. Perkin Trans. 1 1990, 2185.
Ikeda, I.; Honda, K.; Osawa, E.; Shiro, M.; Aso, M.; Kanematsu,
K. J. Org. Chem. 1996, 61, 2031. b) Ikeda, I.; Gondo, A.; Shiro,
M.; Kanematsu, K. Heterocycles 1993, 36, 2669. c) Schlessinger,
R.; Bergstrom, C. P. J. Org. Chem. 1995, 60, 16.
17
diene respectively. Furthermore, both processes produce adducts in
which the double bond generated from the allene can be either exocyclic
or endocyclic, inviting some probing mechanistic questions, about the
sequence of events associated with formation of the [2+2] cycloadducts.
All of the products could be structurally assigned using 2D NMR
techniques, and an X-ray crystal structure determination confirmed the
structure of the [2+2] cycloadduct 14, Figure 1.
4
Barbarella, G.;Cinquini, M.; Colonna, S. J. Chem. Soc., Perkin
Trans. 1, 1980, 1646.
5
6
Braverman, S.; Lior, Z. Tetrahedron Lett. 1994, 35, 6725.
a) Guildford, A. J.; Turner, R. W. J. Chem. Soc., Chem. Commun.
1983, 466. b) Pavri, N. P.; Trudell, M. L. Tetrahedron Lett. 1997,
38, 7993. c) Veniard, L.; Benaïm, J.; Pourcelot, G. C. R. Seances
Acad. Sci., 1968, C, 1092. d) Hayakawa, K.; Nishiyama, H.;
Kanematsu, K. J. Org. Chem. 1985, 50, 512
7
8
Block, E.; Putman, F. J. Am. Chem. Soc. 1990, 112, 4072.
a) Whitmore, F. C.; Thurman, N. J. Am. Chem. Soc. 1923, 45,
1068. b) Truce, W. E.; Wolf, G. C. J. Org. Chem. 1971, 36, 1727.
c) Harwood, L. M.; Julia, M.; Le Thuillier G. Tetrahedron 1980,
36, 2483.
9
Phenylsulfonylallene has been shown to be an excellent Michael
acceptor: Padwa, A.; Austin, D. J.; Ishida, M.; Muller, C. L.;
Murphree, S. S.; Yeske, P.E. J. Org. Chem. 1992, 57, 1161.
10 All new compounds were fully characterised by elemental
analysis and spectroscopic data. Cpd. 2: m.p. 105-106°C (from
Scheme 4
CCl ); δ (200 MHz, CDCl ) 6.73 (2H, s, 1- and 3-H), 7.55-7.76
4
H
3
(6H, m, m- and p-H of SO C H ), and 7.93-8.01 (4H, m, o-H of
2
6 5
SO C H ); δ (50MHz, CDCl ) 108.0 (2C, d, C-1 and C-3),
2
6
5
C
3
128.1 and 129.5 (each 4C, d, o- and m-C of SO C H ), 134.5 (2C,
2
6 5
d, p-C of SO C H ), 139.9 (2C, s, C-1 of SO C H ).
2
6
5
2 6 5
11 Selected NMR data (400 MHz, CDCl ) for cpds. 5, 6, 9, 10, 11
3
and 12: δ 4.69 (1H, dd, J 2.9 and 2.8 Hz, 5-H ), 6.2 (1H, dd, J
H
n
5.5 and 3.0 Hz, 3-H), 6.25 (1H, ddd, J 5.5, 3.2 and 0.8 Hz, 2-H),
6.52 (1H, d, 2.9 Hz, 1´-H); 6: δ 5.28 (1H, dd, J 3.7 and 2.3 Hz, 5-
H
H ), 6.18 (1H, dd, J 5.6 and 3.2 Hz, 2-H), 6.51 (1H, dd, J 2.3 and
x
0.8 Hz, 1´-H), 6.72 (1H, dd, J 5.6 and 2.8 Hz, 3-H); 9: δ 3.72
H
(1H, dd, J 1.5 and 0.8 Hz, 5-H ), 6.50 (1H, dd, J 5.6 and 1.8 Hz, 2-
n
H), 6.61 (1H, dd, J 5.6 and 2.0 Hz, 3-H), 6.79 (1H, dd, J 1.5 and
1.4 Hz, 1´-H); 10: δ 4.83 (1H, dd, J 1.9 and 0.8 Hz, 5-H ), 6.43
H
n
(1H, dd, J 5.6 and 1.9 Hz, 3-H), 6.53 (1H, dd, J 5.6 and 1.9 Hz, 2-
H), 6.57 (1H, dt, J 1.9 and 2x0.8 Hz, 1´-H); 11: δ 5.35 (1H, dd, J
H
4.5 and 2.1 Hz, 5-H ), 6.47 (1H, d, J 2.1 Hz, 1´-H), 6.58 (1H, dd, J
x
5.6 and 1.9 Hz, 3-H), 7.07 (1H, ddd, J 5.6, 1.6 and 0.7 Hz, 2-H);
12: δ 4.31 (1H, dd, J 3.9 and 1.9 Hz, 5-H ), 6.39 (2H, m, 1- and
H
x
3-H), 6.46 (1H, dd, J 5.8 and 1.9 Hz, 2-H), 6.76 (1H, dd, J 1.9 and
1.2 Hz, 1´-H).
12 Selected data for cpd. 13: m.p. 165-167°C (from EtOAc-hexane);
δ
5.19 (2H, s, 1´-H ), 7.24-7.40 (2H, m, 6- and 5-H), 7.40-7.76
2
H
In conclusion, allene 2 extends the repertoire for sulfonylallenes in
cycloaddition methodology. Further studies are in progress to delineate
its profile in synthesis.
(7H, m, 4-H and m- and p-H of SO C H ), 7.79-7.94 (4H, m, o-H
of SO C H ).
2
6 5
2
6 5
13 a) Padwa, A.; Lipka, H.; Watterson, S. H.; Tetrahedron Lett. 1995,
36, 4521. b) Padwa, A.; Meske, M.; Murphree, S. S.; Watterson,
S. H.; Ni, Z. J. Am. Chem. Soc. 1995, 117, 7071. c) Padwa, A.;
Filipkowski, M. A.; Meske, M.; Watterson, S. H.; Ni, Z. J. Am.
Chem. Soc. 1993, 115, 3776.
Acknowledgements. We thank the Foundation for Research and
Development Pretoria, AECI Ltd and the University of Cape Town for
financial support.
14 Yeo, S. K.; Shiro, M.; Kanematsu, K. J. Org. Chem. 1994, 59,
References and Notes
1621.
1
See the allene section in: Kappe, C. O.; Murphree, S. S.; Padwa,
A. Tetrahedron 1997, 53, 14179.
15 a) Pasto, D. J.; Sugi, K. D.; Alonso, D. E.; J. Org. Chem. 1992, 57,
1146. b) Dolbier, W. R. Acc. Chem. Res. 1991, 24, 63.