6772
J . Org. Chem. 1998, 63, 6772-6773
Sch em e 1. C2 Sym m etr y-Br ea k in g of Dien es I by
Mea n s of a Mon ofu n ction a liza tion Str a tegy (a ) a n d by
a Sym m etr y-Dr iven Str a tegy (b)
Sym m etr y Br ea k in g of Novel C2 Ch ir a l
Acr oss-Rin g 1,3-Dien es
Pedro Noheda,*,‡ Germa´n Garc´ıa-Ruiz,‡
Mar´ıa C. Pozuelo,‡ Khalid Abbassi,‡
Eva Pascual-Alfonso,‡ J ose´ M. Alonso,§ and
J esu´s J ime´nez-Barbero‡
Departamento de S´ıntesis, Instituto de Quı´mica Orga´nica
General, CSIC, J uan de la Cierva 3, E-28006 Madrid, Spain,
and Centro de Investigacio´n Qu´ımica, J ANSSEN-CILAG SA.,
J arama s/ n, 45070 Toledo, Spain
Sch em e 2a
Received J uly 6, 1998
Enantiomerically pure C2-symmetric compounds are pow-
erful tools for chemistry.1 Nevertheless, their use as chiral
templates for the synthesis of unsymmetrical targets is only
efficient provided that no additional elements or steps are
required to improve the statistical results of the symmetry-
breaking step.2 Monofunctionalization has been the unique
strategy described for C2 symmetry breaking.3,4 Up to now,
the possibility of a C2 symmetry breaking induced by a
symmetry-driven functionalization at both homotopic sites
remains experimentally unexplored.
We herein report on this possibility by using the formation
of the unsymmetrical structures II as model. In this context,
the Diels-Alder reaction of the hitherto unknown chiral C2
across-ring 1,3-dienes I5,6 and a D∞h symmetric acetylene
(Scheme 1) has been carried out. The driving force for C2
symmetry breaking is now the conservation of the orbital
symmetry7 of a 4πs + 2πs process. In addition, dienes I have
been transformed into the structures III by an osmium-
a
Key: (i) p-NO2C6H4CO2H (YOH), PPh3, DEAD, THF, rt; (ii) LiOH
(1 N), THF/MeOH (2:1); (iii) ClCH2OEt (Cl-EOM), i-Pr2EtN, CH2Cl2,
-20 °C to rt; (iv) n-BuLi, ClSnMe3, THF, -78 °C to rt; (v) Cu(NO3)2-
(OH2)3, THF, rt; (vi) dimethylhexylsilyl chloride (Cl-THS), imidazole,
DMF, 0 °C to rt; (a) i, ii (71%, two steps); (b) iii (93%), iv (83%); (c) v
(88%); (d) i (72%); (e) vi (87%), ii (96%); (f) iii (93%), iv, v (61% two
steps); (g) vi (92%), iii (95%), iv (78%); (h) v (73%).
* To whom correspondence should be addressed. Tel.: 34-(1)-91562 2900.
Fax: 34-(1)-91564 4853. E-mail: iqonm32@pinar1.csic.es.
‡ Instituto de Qu´ımica Orga´nica General.
§ Centro de Investigacio´n Qu´ımica.
catalyzed bis-hydroxylation reaction. This process8 illus-
trates that monofunctionalization, as defined above, can also
be applied on dienes I to induce C2 symmetry breaking.
Preparation of bis-2,2′-cyclohexenol derivative 3 was first
addressed (Scheme 2). Both enantiomers of the chosen
starting precursor, 2-bromo-2-cyclohexenol (1), can be ef-
ficiently prepared,9 and they can be interconnected10 by
taking advantage of their chirality plane.11 Therefore,
structures II and III or their enantiomers could be synthe-
sized from 1 or ent-1.
The protection of the allylic alcohols of 1 and ent-1 as their
ethoxymethoxy derivatives (EOM) followed by transmeta-
lation (n-BuLi, THF, -78 °C) and subsequent treatment
with trimethyltin chloride (THF, -78 °C to rt) gave, respec-
tively, the corresponding trimethylvinylstannanes 2 and
ent-2 (77% from 1 and ent-1, respectively). The key homo-
coupling processes from each 2 and ent-2 were performed
by treatment with Cu(NO3)2(OH2)3 (THF, rt, 88%).12,13
When the same protocol was used starting from rac-1, a
mixture of rac-3 and meso-3 (1:1)14 was obtained.
(1) As chiral ligands: (a) Whitesell, J . K. Chem. Rev. 1989, 1581-1590.
(b) Kagan, H. In Asymmetric Synthesis; Morrison, J . D., Ed.; Academic
Press: New York, 1983; Vol. 4, pp 1-39. (c) Noyori, R. Asymmetric Catalysis
in Organic Synthesis; J ohn Wiley and Sons: New York, 1994. (d) Ojima, I.
Catalytic Asymmetric Synthesis; VCH Publishers: New York, 1993. As chiral
templates, see: (e) Ho, T.-L. Tactics of Organic Synthesis; J ohn Wiley and
Sons: New York, 1994; pp 348-373. (f) Ho, T.-L. Symmetry. A Basis for
Synthesis Design; J ohn Wiley and Sons: New York, 1995.
(2) (a) Bertz, S. H. J . Chem. Soc., Chem. Commun. 1984, 218-219 and
references therein. (b) Bertz, S. H.; Sommer, T. J . In Organic Synthesis.
Theory and Applications; Hudlicky, T., Ed.; J AI Press: Greenwich, CT, 1993;
pp 83-87. Enzymatically controlled symmetry-breaking steps are part of
key biological processes, i.e., biosynthesis of triterpenes from squalene. (c)
Nes, W. D.; Venkatramesh, M. In Isopentenoids and Other Natural Products;
Nes, W. D., Ed.; ACS Symposium Series 562; American Chemical Society:
Washington, DC, 1994; pp 55-89.
(3) Maier, M. In Organic Synthesis Highlights II; Waldmann, H., Ed.;
VCH Verlagsgesellschaff: Weinheim, 1995; pp 203-222 and references
therein.
(4) Poss, C. S.; Schreiber, S. L. Acc. Chem. Res. 1994, 27, 9-17.
(5) Chiral 1,3-dienes have attracted an increased attention from the
pioneering work of Trost. They remain unusual compounds. For leading
references, see: (a) Trost, B. M.; O’Krongly, D. J .; Belletire, L. J . Am. Chem.
Soc. 1980, 102, 7595-7596. (b) Menezes, R. F.; Zezza, C. A.; Sheu, J .; Smith,
M. B. Tetrahedron Lett. 1989, 30, 3295-3298. (c) Enders, D.; Meyer, O.;
Raabe, G. Synthesis 1992, 1242-1244. (d) Barluenga, J .; Aznar, F.; Valde´s,
C.; Mart´ın, A.; Garc´ıa-Granda, S.; Mart´ın, E. J . Am. Chem. Soc. 1993, 115,
4403-4404. (e) Kozmin, S. A.; Rawal, V. H. J . Am. Chem. Soc. 1997, 119,
7165-7166. (f) Barluenga, J .; Toma´s, M.; Lo´pez, L. A.; Sua´rez-Sobrino, A.
Synthesis 1997, 967-974. (g) Virgili, M.; Moyano, A.; Perica`s, M. A.; Riera,
A. Tetrahedron Lett. 1997, 38, 6921-6924.
(6) Across-ring 1,3 dienes have been used in mechanistic studies and in
the synthesis of natural products: (a) Fringuelli, F.; Tatichi, A. Dienes in
the Diels-Alder Reaction; J ohn Wiley and Sons: New York, 1990; pp 171-
176. (b) Kim, T.; Mirafzal, G. A.; Liu, J .; Bauld, N. L. J . Am. Chem. Soc.
1993, 115, 7653-7664. (c) Lew, C. S. Q.; Brisson, J . R.; J ohnston, L. J . J .
Org. Chem. 1997, 62, 4047-4056. (d) Boons, G. -J .; Entwistle, D. A.; Ley,
S. V.; Woods, M. Tetrahedron Lett. 1993, 35, 5649-5652. (e) Nicolaou, K.
C.; Sato, M.; Miller, N. D.; Gunzner, J . L.; Renaud, J .; Untersteller, E.
Angew. Chem. 1996, 108, 952-955; Angew. Chem., Int. Ed. Engl. 1996, 35,
889-891.
(7) Hoffmann, R.; Woodward, R. B. J . Am. Chem. Soc. 1965, 87, 2046-
2048.
(8) For a review on substrate-directible reactions including allylic alco-
hols, see: Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93,
1307-1370.
(9) (a) Noheda, P.; Garc´ıa, G.; Pozuelo, M. C.; Herrado´n, B. Tetrahe-
dron: Asymmetry 1996, 7, 2801-2804. (b) J ohnson, C. R.; Sakaguchi, H.
Synlett 1992, 813-816. (c) Corey, E. J .; Chen, C.-P.; Reichard, G. A.
Tetrahedron Lett. 1989, 30, 5547-5550.
(10) For a review on the Mitsunobu reaction, see: Hughes, D. L. Org.
Prep. Proc. Int. 1996, 28, 127-164.
(11) Hudlicky, T.; Price, J . D.; Rulin, F.; Tsunoda, T. J . Am. Chem. Soc.
1990, 112, 9439-9440 and references therein.
S0022-3263(98)01296-1 CCC: $15.00 © 1998 American Chemical Society
Published on Web 09/05/1998