J . Org. Chem. 1998, 63, 8031-8034
8031
Du Pont de Nemours & Company, which has seen also
application in other asymmetric reactions.6
Syn th esis of a New Cla ss of F u n ction a lized
Ch ir a l Bisp h osp h ola n e Liga n d s a n d th e
Ap p lica tion in En a n tioselective
Hyd r ogen a tion s
J ens Holz,*,† Michael Quirmbach,† Ute Schmidt,†
Detlef Heller,† Rainer Stu¨rmer,‡ and Armin Bo¨rner*,†
Institut fu¨r Organische Katalyseforschung an der
Universita¨t Rostock e.V., Buchbinderstrasse 5/ 6,
D-18055 Rostock, Germany, and BASF Aktiengesellschaft,
Hauptlaboratorium - ZHF/ D, Feinchemikalien,
D-67056 Ludwigshafen, Germany
Received May 20, 1998
In tr od u ction
The enantioselective hydrogenation of prochiral olefins
or ketones with phosphine-metal complexes represents
an extremely useful and versatile reaction.1 Over the last
years it has seen broad application in lab-scale organic
synthesis as well as in the industrial scale for the
production of fine chemicals.2 Due to the increasing
importance there is an ongoing interest focused on the
design of new ligands and metal complexes.3
One of the most powerful classes of ligands associated
to rhodium(I) hydrogenation catalysts constitutes chiral
C2-symmetric bis-phospholanes, e.g., 1,2-bis(2,5-dimeth-
ylphospholanyl)benzene (1a , DuPHOS), 1,2-bis(2,5-di-
methylphospholanyl)ethane (1b , BPE),4 and related
ligands,5 originally developed by Burk and co-workers at
The synthesis of these chiral phospholanes entails as
key steps the asymmetric hydrogenation of â-keto esters
affording the corresponding chiral hydroxy esters, fol-
lowed by an electrochemical coupling procedure of the
chiral units (Kolbe reaction). Due to this preparative
protocol the self-made synthesis requires additional
experience and equipment not always available in each
laboratory. Inspection of the literature reveals that some
alternatives for the construction of the chiral phospholane
framework exist including stoichiometric asymmetric
reactions as well as the employment of enzymatic
methods.7-10 However, none of the procedures delivers
functionalized phospholanes, although the effect of ad-
ditional functional groups in phosphine metal complexes
is well documented. In particular ether functions known
from the high efficiency of DIPAMP-Rh(I)-complexes11
can advantageously contribute to the enantioface-dis-
criminating ability of the catalyst.12
* Corresponding author. Tel: +49-381-4669310/50. Fax: +49-
381-4669324. E-mail: armin.boerner@ifok.uni-rostock.de.
† Institut fu¨r Organische Katalyseforschung.
‡ BASF.
(1) (a) Koenig, K. E. In Asymmetric Synthesis; Morrison, J . D., Ed.;
Academic Press: Orlando, 1985; Vol. 5, Chapter 3, p 71. (b) Takaya,
H.; Ohta, T.; Noyori, R. In Catalytic Asymmetric Synthesis; Ojima, I.,
Ed.; VCH: Weinheim, 1993; Chapter 1, p 1. (c) Seyden-Penne, J . Chiral
Auxiliaries and Ligands in Asymmetric Synthesis; J ohn Wiley &
Sons: New York, 1995; Chapter 7, p 367.
(2) (a) Akutagawa, S. In Chirality in Industry; Collins, A. N.,
Sheldrake, G. N., Crosby, J ., Eds.; J ohn Wiley & Sons: Chichester,
1992; Chapter 17, p 325. (b) Sheldon, R. A. Chirotechnology; Marcel
Dekker: New York, 1993, Chapter 8, p 285. (c) Kumobayashi, H. Rec.
Trav. Chim. Pay-Bas 1996, 115, 201. (d) Blaser, H.-U.; Spindler, F.
Chimia 1997, 51, 297. (e) Imwinkelried, R. Ibid. 1997, 51, 300. (f)
Crameri, Y.; Foricher, J .; Hengartner, U.; J enny, C.-J .; Kienzle, F.;
Ramuz, H.; Scalone, M.; Schlageter, M.; Schmid, R.; Wang, S. Ibid.
1997, 51, 303. (g) Bo¨rner, A.; Holz, J . In Transition Metals for Organic
Synthesis; Beller, M., Bolm, C., Eds; Vol. 2, VCH: Weinheim, 1998;
Chapter 1.1.1, p 3.
(3) For recent publications see: (a) Pye, P. J .; Rossen, K.; Reamer,
R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J . J . Am. Chem. Soc. 1997,
119, 6207. (b) Robin, F.; Mercier, F.; Ricard, L.; Mathey, F.; Spagnol,
M. Chem. Eur. J . 1997, 3, 1365. (c) Langer, F.; Pu¨ntener, K.; Stu¨rmer,
R.; Knochel, P. Tetrahedron: Asymmetry 1997, 8, 715. (d) Enev, V.;
Ewers, C. L. J .; Harre, M.; Nickisch, K.; Mohr, J . T. J . Org. Chem.
1997, 62, 7092. (e) Zhu, G.; Cao, P.; J iang, Q.; Zhang, X. J . Am. Chem.
Soc. 1997, 119, 1799. (f) Imamoto, T.; Watanabe, J .; Wada, Y.; Masuda,
H.; Yamada, H.; Tsuruta, H.; Matsukawa, S.; Yamaguchi, K. J . Am.
Chem. Soc. 1998, 120, 1635.
(4) (a) Burk, M. J . J . Am. Chem. Soc. 1991, 113, 8518. (b) Burk, M.
J .; Feaster, J . E.; Harlow, R. L. Tetrahedron: Asymmetry 1991, 2, 569.
(c) Burk, M. J .; Feaster, J . E.; Nugent, W. A.; Harlow, R. L. J . Am.
Chem. Soc. 1993, 115, 10125. (d) Burk, M. J .; Feng, S.; Gross, M. F.;
Tumas, W. J . Am. Chem. Soc. 1995, 117, 8277. (e) Burk, M. J .; Gross,
M. F.; Harper, T. G. P.; Kalberg, C. S.; Lee, J . R.; Martinez, J . P. Pure
Appl. Chem. 1996, 68, 37. (f) Albrecht, J .; Nagel, U. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 407.
Considering these features, we decided to disclose a
new and simple pathway to enantiopure and function-
alized bis-phospholane ligands 3a ,b and 4a starting from
(6) (a) Barnhart, R. W.; McMorran, D. A.; Bosnich, B. Chem.
Commun. 1997, 589. (b) Alexakis, A.; Burton, J .; Vastra, J .; Mangeney,
P. Tetrahedron: Asymmetry 1997, 8, 3987.
(7) (a) Fiaud, J .-C.; Legros, J .-Y. Tetrahedron Lett. 1991, 32, 5089.
(b) Nagai, H.; Morimoto, T.; Achiwa, K. Synlett 1994, 289. (c) Morimoto,
T.; Ando, N.; Achiwa, K. Ibid. 1996, 1211. (d) Longeau, A.; Durand,
S.; Spiegel, A.; Knochel, P. Tetrahedron: Asymmetry 1997, 8, 987. (e)
Hume, S. C.; Simpkins, N. S. J . Org. Chem. 1998, 63, 912.
(8) For related ligands based on the chiral phosphetane framework
see: Marinetti, A.; Kruger, V.; Buzin, F. X. Tetrahedron Lett. 1997,
38, 2947.
(9) Quite recently, the synthesis of the bis-phospholane-based ligand
PennPHOS, being highly efficient in ketone hydrogenation, was
reported: J iang, Q.; J iang, Y.; Xiao, D.; Cao, P.; Zhang, X. Angew.
Chem., Int. Ed. 1998, 37, 1100.
(10) One of the referees informed us that at the time the requisite
chiral 1,4-diols for the synthesis of DuPHOS-type ligands at ChiroTech
(Cambridge, UK) are derived from an enzymatic approach.
(11) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J .; Bachmann,
G. L.; Weinkauff, D. J . J . Am. Chem. Soc. 1977, 99, 5946.
(12) (a) Horner, L.; Siegel, H.; Buthe, H. Angew. Chem., Int. Ed.
Engl. 1968, 7, 942. (b) J ohnson, C. R.; Imamoto, T. J . Org. Chem. 1987,
52, 2170. (c) Burgess, K.; Ohlmeyer, M. J .; Whitmire, K. H. Organo-
metallics 1992, 11, 3588. (d) Nagel, U.; Krink, T. Angew. Chem., Int.
Ed. Engl. 1993, 32, 1052. (e) Nagel, U.; Krink, T. Chem. Ber. 1993,
126, 1091. (f) Yang, H.; Alvarez, M.; Lugan, N.; Mathieu, R. J . Chem.
Soc., Chem. Commun. 1995, 1721. (g) Nagel, U.; Krink, T. Chem. Ber.
1995, 128, 309.
(5) Burk, M. J .; Gross, M. F. Tetrahedron Lett. 1994, 35, 9363.
10.1021/jo980960s CCC: $15.00 © 1998 American Chemical Society
Published on Web 10/08/1998