11184
J. Am. Chem. Soc. 1998, 120, 11184-11185
complex (Cy3P)2PtdSiMes2 (1; Scheme 1). After workup, this
complex was isolated in 54% yield as green microcrystals.
Similarly, red solutions of (iPr3P)2PtdSiMes2 (2) were quantita-
tively produced from Pt(PiPr3)37 and Mes2Si(SiMe3)2 in benzene-
Isolation and Characterization of Neutral Platinum
Silylene Complexes of the Type (R3P)2PtdSiMes2
(Mes ) 2,4,6-Trimethylphenyl)
1
d6 (by H and 31P NMR spectroscopy), but removal of solvent
Jay D. Feldman, Gregory P. Mitchell, Jo¨rn-Oliver Nolte, and
T. Don Tilley*
resulted in complete conversion back to Pt(PiPr3)3, along with a
variety of unidentified silicon-containing products. Complex 1
is stable indefinitely in the solid state, but decomposes in solution
over several days to Pt(PCy3)2 and uncharacterized silicon-
containing compounds. For sparingly soluble 1, a long accumula-
tion time was required to observe the 29Si NMR resonance (δ
358; JSiP ) 112 Hz), which confirmed the presence of the silylene
ligand.3 For the soluble complex 2 the 29Si NMR signal was more
readily observed, at δ 367 (JSiP ) 107 Hz; JSiPt ) 2973 Hz). For
comparison, the only other platinum silylene complexes to be
reported have 29Si shifts of δ 309, for [trans-(Cy3P)2(H)PtdSi-
Department of Chemistry
UniVersity of California at Berkeley
Berkeley, California 94720-1460
ReceiVed June 1, 1998
Unlike the analogous transition-metal carbene complexes,
silylene complexes (LnMdSiR2) are extremely rare and poorly
understood.1 Nonetheless, such species have generated consider-
able interest since they appear to be involved in numerous
transformations of organosilicon compounds.2 For this reason,
many synthetic efforts have targeted the isolation and study of
complexes featuring silylene ligands. In recent years, these efforts
have culminated in the syntheses of a number of transition metal
compounds containing sp2-hybridized silicon.3 For the most part
these compounds are cationic, having been obtained via an “anion-
abstraction” method.3a,4 Even among the limited number of
silylene complexes known, a rich variety of bonding modes and
reactivities have been observed. Of particular interest are neutral
silylene complexes of the type (R3P)2MdSiR2 (M ) Pd, Pt),
which have historically been the primary focus of speculation
regarding catalytic silylene intermediates.5 In this communication,
we describe isolation of the first neutral silylene complexes of
this type and initial reactivity studies with them.
(SEt)2][BPh4],3c and
δ
338, for [(iPr2PCH2CH2PiPr2)(H)-
PtdSiMes2][MeB(C6F5)3].8
X-ray quality crystals of 1 were grown from dilute (<0.04 M)
reaction solutions. The molecular structure is shown in Scheme
1. The Pt-Si bond distance of 2.210(2) Å is the shortest yet
reported, and is about 6% shorter than typical Pt-Si single bonds
(2.30-2.40 Å).1a,b For comparison, the Pt-Si distance in [trans-
(Cy3P)2(H)PtSi(SEt)2][BPh4] is 2.270(2) Å, but note that the latter
complex was characterized as being “Fischer-like”, with signifi-
cant Si-S, but very little Pt-Si, π-bonding.3c The summation
of angles about Si, 359.8(6)°, confirms the presence of a planar,
sp2-hybridized silicon atom, and the angles about platinum also
sum within experimental error to 360°. The least-squares plane
of the silylene ligand (including Pt, Si, and the two ipso carbons)
and the coordination plane of platinum (Si, Pt, P, P) intersect at
a dihedral angle of 68.6°, which is not optimal for Pt-to-Si
π-donation. This deviation appears to result from the sterically
hindered environment about the Pt-Si bond, as the expected
dihedral angle of 90° is observed in structures of the related
6
7
Photolysis of a mixture of Mes2Si(SiMe3)2 and Pt(PCy3)2 in
hexanes resulted in a green, supersaturated solution of the silylene
(1) (a) Tilley, T. D. In The Silicon-Heteroatom Bond; Patai, S.; Rappoport,
Z., Eds.; Wiley: New York, 1991; Chapters 9 and 10, pp 245 and 309. (b)
Tilley, T. D. In The Chemistry of Organic Silicon Compounds; Patai, S.,
Rappoport, Z., Eds.; Wiley: New York, 1989; Chapter 24, p 1415. (c) Tilley,
T. D. Comments Inorg. Chem. 1990, 10, 37. (d) Lickiss, P. D. Chem. Soc.
ReV. 1992, 271. (e) Pannell, K. H.; Sharma, H. K. Chem. ReV. 1995, 95, 1351.
(f) Zybill, C. Top. Curr. Chem. 1991, 160, 1.
9
germylene and stannylene complexes (Et3P)2PtGe[N(SiMe3)2]2
and (iPr2PCH2CH2PiPr2)PdSn[CH(SiMe3)2]2,10 respectively.
Initial reactivity studies show that 1 quantitatively transfers its
silylene group to water and alcohols via insertion into O-H bonds
(Scheme 1). Thus, addition of ROH (R ) H, Me, Et) to 1 resulted
in the clean formation of Pt(PCy3)2 and the corresponding silane
Mes2Si(OR)H. No intermediates were observed while monitoring
(2) (a) Pannell, K. H.; Cervantes, J.; Hernandez, C.; Cassias, J.; Vincenti,
S. Organometallics 1986, 5, 1056. (b) Pannell, K. H.; Rozell, J. M., Jr.;
Hernandez, C. J. Am. Chem. Soc. 1989, 111, 4482. (c) Pannell, K. H.; Wang,
L.-J.; Rozell, J. M. Organometallics 1989, 8, 550. (d) Pannell, K. H.; Sharma,
H. Organometallics 1991, 10, 954. (e) Jones, K. L.; Pannell, K. H. J. Am.
Chem. Soc. 1993, 115, 11336. (f) Hernandez, C.; Sharma, H. K.; Pannell, K.
H. J. Organomet. Chem. 1993, 462, 259. (g) Pannell, K. H.; Brun, M.-C.;
Sharma, H.; Jones, K.; Sharma, S. Organometallics 1994, 13, 1075. (h) Pannell,
K. H.; Sharma, H. K.; Kapoor, R. N.; Cervantes-Lee, F. J. Am. Chem. Soc.
1997, 119, 9315. (i) Tobita, H.; Ueno, K.; Ogino, H. Bull. Chem. Soc. Jpn.
1988, 61, 2797. (j) Ueno, K.; Tobita, H.; Ogino, H. Chem. Lett. 1990, 369.
(k) Ueno, K.; Kakano, K.; Ogino, H. Chem. Lett. 1996, 459. (l) Okazaki, M.;
Tobita, H.; Ogino, H. J. Chem. Soc., Dalton Trans. 1997, 3531. (m) Haynes,
A.; George, M. W.; Haward, M. T.; Poliakoff, M.; Turner, J. J.; Boag, N. M.;
Green, M. J. Am. Chem. Soc. 1991, 113, 2011. (n) Nlate, S.; Herdtweck, E.;
Fischer, R. A. Angew. Chem., Int. Ed. Engl. 1996, 35, 186. (o) Pestana, D.
C.; Koloski, T. S.; Berry, D. H. Organometallics 1994, 13, 4173. (p) Mitchell,
G. P.; Tilley, T. D.; Yap, G. P. A.; Rheingold, A. L. Organometallics 1995,
14, 5472. (q) Mitchell, G. P.; Tilley, T. D. Organometallics 1996, 15, 3477.
(r) Clarke, M. P.; Davidson, I. M. T. J. Organomet. Chem. 1991, 408, 149.
(3) Silylene complexes with sp2 silicon atoms: (a) Straus, D. A.; Grumbine,
S. D.; Tilley, T. D. J. Am. Chem. Soc. 1990, 112, 7801. (b) Grumbine, S. D.;
Tilley, T. D.; Rheingold, A. L. J. Am. Chem. Soc. 1993, 115, 358. (c)
Grumbine, S. D.; Tilley, T. D.; Arnold, F. P.; Rheingold, A. L. J. Am. Chem.
Soc. 1993, 115, 7884. (d) Grumbine, S. K.; Tilley, T. D.; Arnold, F. P.;
Rheingold, A. L. J. Am. Chem. Soc. 1994, 116, 5495. (e) Denk, M.; Hayashi,
R. K.; West, R. J. Chem. Soc., Chem. Commun. 1994, 33.
1
the reaction of 1 with ethanol at -60 °C (by H and 31P NMR
spectroscopy in toluene-d8). Related reactivity was previously
reported for the base-stabilized silylene complex [Cp*(Me3P)2-
RuSiPh2(NCMe)]+, which was presumed to dissociate acetonitrile
prior to reaction with an alcohol.11 This reactivity contrasts with
what has been observed for (iPr2PCH2CH2PiPr2)PdSn[CH-
(SiMe3)2]2, which reversibly adds H2O across the Pd-Sn bond
to form a palladium hydride species.12 Reactions of 1 with various
phosphines (iPr2PCH2CH2PiPr2, Ph2PCH2CH2PPh2, and PMe3, in
excess) led to PCy3- and SiMes2-displacement, with formation
of the corresponding PtL4 complex (quantitative by 31P NMR
spectroscopy). In these processes, the displaced silylene ligand
is observed to decompose to a number of species (but not
significant amounts of Mes2SidSiMes2).
(6) Fink, M. J.; Michalczyk, M. J.; Haller, K. J.; West, R.; Michl, J.
Organometallics 1984, 3, 793.
(7) (a) Yoshida, T.; Otsuka, S. Inorg. Synth. 1990, 28, 113. (b) Yoshida,
T.; Matsuda, T.; Otsuka, S. Inorg. Synth. 1990, 28, 119.
(8) Mitchell, G. P.; Tilley, T. D. Angew. Chem. Intl. Ed. In press.
(9) Litz, K. E.; Henderson, K.; Gourley, R. W.; Banaszak Holl, M. M.
Organometallics 1995, 14, 5008.
(10) Krause, J.; Haack, K.-J.; Po¨rschke, K.-R.; Gabor, B.; Goddard, R.;
Pluta, C.; Seevogel, K. J. Am. Chem. Soc. 1996, 118, 804.
(11) Zhang, C.; Grumbine, S. D.; Tilley, T. D. Polyhedron 1991, 10, 1173.
(12) Schager, F.; Seevogel, K.; Po¨rschke, K.-R.; Kessler, M.; Kru¨ger, C.
J. Am. Chem. Soc. 1996, 118, 13075.
(4) Grumbine, S. K.; Straus, D. A.; Tilley, T. D.; Rheingold, A. L.
Polyhedron 1995, 14, 127.
(5) L2MdSiR2 intermediates: (a) Yamamoto, K.; Okinoshima, H.; Kumada,
M. J. Organomet. Chem. 1971, 27, C31. (b) Yamashita, H.; Tanaka, M.; Goto,
M. Organometallics 1992, 11, 3227. (c) Seyferth, D.; Shannon, M. L.; Vick,
S. C.; Lim, T. F. O. Organometallics 1985, 4, 57. (d) Tanaka, Y.; Yamashita,
H.; Tanaka, M. Organometallics 1995, 14, 530. (e) Tamao, K.; Sun, G.-R.;
Kawachi, A. J. Am. Chem. Soc. 1995, 117, 8043. (f) Palmer, W. S.; Woerpel,
K. A. Organometallics 1997, 16, 4824.
10.1021/ja981882t CCC: $15.00 © 1998 American Chemical Society
Published on Web 10/16/1998