NMR (300 MHz, CDCl3) δ 1.11 (3H, t, J 7.2, -CH2CH3), 1.16
(3H, t, J 7.2, -CH2CH3), 3.40 (4H, m, -CH2CH3), 3.51 (1H, d,
J 1.8, CH), 4.17 (1H, d, J 1.8, CH), 7.44 (2H, d, J 8.7, ArH),
8.16 (2H, d, J 8.7, ArH); MS m/z 265 (Mϩ ϩ 1, 100), 264 (Mϩ,
Acknowledgements
Financial support from the National Natural Science Found-
ation of China (29790127) and Chinese Academy of Sciences is
gratefully acknowledged.
22), 192 (29), 100 (48), 99 (31), 72 (49); IR (KBr) 1655 (C᎐O).
᎐
Chiralcel OD, hexane–i-PrOH (80:20); 23.9 min (2S,3R), 27.1
min (2R,3S).
References
1 For a review of epoxides in synthetic organic chemistry, see:
J. Gorzynski Smith, Synthesis, 1984, 629 and references cited therein.
For a review on the reactivity of epoxides: M. Bartók and
K. L. Lang, in The Chemistry of Functional Groups, Supplement E,
ed. S. Patai, Wiley, New York, 1980, pp. 609–681.
trans-N,N-Diethyl-3-(4-trifluoromethylphenyl)-2,3-epoxy-
propionamide 3bf. (Found: C, 58.34; H, 5.74; N, 4.64; C14H16-
F3O2 requires C, 58.53; H, 5.64; N, 4.88%); [α]D20 Ϫ42.1 (c, 1.00,
1
acetone); H NMR (300 MHz, CDCl3) δ 1.04 (3H, t, J 7.2,
-CH2CH3), 1.11 (3H, t, J 7.2, -CH2CH3), 3.36 (4H, m, -CH2-
CH3), 3.48 (1H, d, J 1.8, CH), 4.06 (1H, d, J 1.6, CH), 7.36 (2H,
d, J 8.2, ArH), 7.53 (2H, d, J 8.3, ArH); MS m/z 288 (Mϩ ϩ 1,
10), 264 (Mϩ, 30), 270 (53), 195 (28), 173 (32), 159 (62),
2 For notable biological significance see: (a) S. Hatakeyama, N. Ochi
and S. Takano, Chem. Pharm. Bull., 1993, 41, 1358; (b) D. M. Jerina
and J. M. Daly, Science, 1974, 185, 573; (c) A. R. Becker, J. M.
Janusz and T. C. Bruice, J. Am. Chem. Soc., 1979, 101, 5679.
3 (a) For a review on Sharpless epoxidations: R. A. Johnson and K. B.
Sharpless, in Comprehensive Organic Synthesis, eds. B. M. Trost and
I. Fleming, Pergamon Press, Oxford, 1991, vol. 7, p. 389. For Mn
salen complex-catalyzed asymmetric epoxidation: (b) W. Zhang,
J. L. Loebach, S. R. Wilson and E. N. Jacobsen, J. Am. Chem. Soc.,
1990, 112, 2801; (c) For a review on metalloporphyrin-catalyzed
asymmetric epoxidation: J. P. Collman, X. Zhang, V. J. Lee, E. S.
Uffelman and J. I. Brauman, Science, 1993, 261, 1404; (d) For
epoxidation by chiral dioxirane, see: Y. Tu, Z.-X. Wang and Y. Shi,
J. Org. Chem. Soc., 1996, 118, 9806; (e) Z.-X. Wang, Y. Tu,
M. Frohn, J.-R. Zhang and Y. Shi, J. Am. Chem. Soc., 1997, 119,
11224; ( f ) D. Yang, M.-K. Wong, Y.-C. Yip, X.-C. Wang, M.-W.
Tang, J.-H. Zheng and K.-K. Cheung, J. Am. Chem. Soc., 1998,
120, 5943; (g) D. Yang, Y.-C. Yip, M.-W. Tang, M.-K. Wong,
J.-H. Zheng and K.-K. Cheung, J. Am. Chem. Soc., 1996, 118, 491;
(h) D. Yang, X.-C. Wang, M.-K. Wong, Y.-C. Yip and M.-W.
Tang, J. Am. Chem. Soc., 1996, 118, 11311. Other routes: (i)
M. Bougauchi, S. Watanabe, T. Arai, H. Sasai and M. Shibasaki,
J. Am. Chem. Soc., 1997, 119, 2329; (j) B. Bhatia, S. Jain, A. De,
I. Bagchi and J. Iqbal, Tetrahedron Lett., 1996, 37, 7311; (k) S. Julia,
J. Masama, J. C. Vega, Angew. Chem., Int Ed. Engl., 1980, 19, 929
and references cited therein.
4 For a review on ylide asymmetric epoxidation: A.-H. Li, L.-X. Dai
and V. K. Aggarwal, Chem. Rev., 1997, 97, 2341 and references cited
therein.
5 B. M. Trost and L. S. Melvin, Sulfur Ylides, Academic Press,
New York, 1975.
6 (a) K. W. Ratts and A. N. Yao, J. Org. Chem., 1966, 31, 1689; (b)
M. Valpuesta-Fernandez and P. Duranta-Lanes, F. J. López-
Herrera, Tetrahedron, 1990, 46, 7911.
7 (a) F. J. López-Herrera, M. S. Pino-Gonzalez, F. Sarabia-Garcia,
A. Heras-López, J. J. Ortega-Alcantara and M. G. Pedraza-Cebrian,
Tetrahedron: Asymmetry, 1996, 7, 2065; (b) M. Valpuesta-
Fernandez, P. Duranta-Lanes and F. J. López-Herrera, Tetrahedron,
1993, 49, 9547; (c) F. J. López-Herrera, A. M. Heras-Lopez, M. S.
Pino-Gonzalez and F. Sarabia-García, J. Org. Chem., 1996, 61,
8839; (d) M. Valpuesta-Fernandez, P. Duranta-Lanes and F. J.
Lopez-Herrera, Tetrahedron Lett., 1995, 36, 4681.
8 (a) L.-X. Dai, B.-L. Lou and Y.-Z. Zhang, J. Am. Chem. Soc., 1988,
110, 5915; (b) J.-Y. Lai, F.-S. Wang, G.-Z. Guo and L.-X. Dai, J. Org.
Chem., 1993, 58, 6944; (c) L.-X. Dai, B.-L. Lou, Y.-Z. Zhang and
G.-Z. Guo, Tetrahedron Lett., 1986, 27, 4343.
9 (a) A.-H. Li, L.-X. Dai, X.-L. Hou, Y.-Z. Huang and F.-W. Li,
J. Org. Chem., 1996, 61, 489; (b) A.-H. Li, Y.-G. Zhou, L.-X. Dai,
X.-L. Hou, L.-J. Xia and L. Lin, Angew. Chem., Int. Ed. Engl., 1997,
36, 1317.
10 R. J. Goodridge, T. W. Hambely, R. K. Haynes and D. D. Ridley, J.
Org. Chem., 1988, 53, 2381.
100 (74), 72 (100), 56 (60); IR (KBr) 1647 (C᎐O). Chiralcel
᎐
OD, hexane–i-PrOH (80:20); 11.6 min (2S,3R), 15.8 min
(2R,3S).
trans-N,N-Dimethyl-3-(4-chlorophenyl)-2,3-epoxypropion-
1
amide 3ab. [α]D20 Ϫ14.2 (c, 1.25, acetone); H NMR (300 MHz,
CDCl3) δ 2.99 (3H, s, NCH3), 3.16 (3H, s, NCH3), 3.58 (1H, d,
J 2.0, CH), 3.96 (1H, d, J 2.0, CH), 7.26 (5H, m, ArH). Chiral-
cel OD, hexane–i-PrOH (80:20); 18.2 min (2S,3R), 19.5 min
(2R,3S).
1
trans-N,N-Diethyl-3-dodecyl-2,3-epoxypropionamide 3bi. H
NMR (300 MHz, CDCl3) δ 0.78 (3H, t, J 6.7, -CH2CH3), 1.03
(3H, t, J 7.1, -CH2CH3), 1.10–1.60 (23H, m, -(CH2)10CH3), 3.04
(1H, dt, J 2.5 and 5.6, CH), 3.22 (1H, d, J 2.1, CH), 3.43 (4H,
m, -CH2CH3); MS m/z 299 (Mϩ ϩ 2, 26.7), 298.2746 (Mϩ ϩ 1,
C19H37NO2 requires 298.2746, 100), 270 (53), 195 (28), 173 (32),
159 (62), 100 (74), 72 (100), 56 (60); IR (KBr) 1656 (C᎐O).
᎐
Chiralcel OD, hexane–i-PrOH (95:5); 10.8 min (2S,3R), 12.1
min (2R,3S).
trans-N,N-Diethyl-3-cyclohexyl-2,3-epoxypropionamide 3bj.
1H NMR (300 MHz, CDCl3) δ 1.10–1.40 (12H, m, -CH2CH2-
CH2- and CH3CH2-), 1.50–1.80 (5H, m, -CH2CHCH2-), 2.93
(1H, dd, J 2.1 and 6.6, CH), 3.40–3.60 (5H, m, -CH2CH3 and
CH); MS m/z 226 (Mϩ ϩ 1, 100), 225.1726 (Mϩ, C13H23NO2
requires 225.1729), 208 (45), 142 (8), 100 (15), 72 (25); IR (KBr)
1660 (C᎐O). Chiralcel OD, hexane–i-PrOH (95:5); 6.5 min
᎐
(2S,3R), 7.5 min (2R,3S).
The determination of absolute configuration of reaction product
Trimethyl orthoacetate (0.383 mL, 3.0 mmol) was added to a
stirred solution of 4 (475 mg, 2.0 mmol) and toluene-p-sulfonic
acid monohydrate (10 mg) in dichloromethane (12 mL). After
15 min, the mixture was evaporated and the residual MeOH
was removed at ca. 0.5 mmHg for 5 min. The residue was taken
up in dichloromethane (5 mL), to which TMSCl (0.41 mL, 2.83
mmol) was added. After 100 min, TLC showed almost com-
plete absence of orthoacetate, the mixture was heated to reflux
for 60 min, and then allowed to cool. Evaporation under reduced
pressure gave the crude acetoxy chloride as an oil. Potassium
carbonate (355 mg, 2.52 mmol) was added in 2 portions over 10
min to a vigorously stirred solution of the crude acetoxy chlor-
ide in MeOH (12 mL) at Ϫ20 ЊC. After 2 h, the mixture was
poured into a saturated aqueous NH4Cl solution (12 mL) and
extracted with dichloromethane (3 × 30 mL), dried over
Na2SO4. Purification of the residue by flash chromatography
(petroleum ether–ethyl acetate 3:1) afforded epoxyamide 5 as a
white solid 288 mg (66%). [α]D20 = 110Њ (c 0.98, acetone). The
absolute configuration of compounds 5 is (2S,3R). On the basis
of the sign of optical rotation and absolution configuration
(2S,3R) of compound 5, (Ϫ)-3a is therefore unambiguously
assigned as (2R,3S).
11 Y. L. Bennani and K. B. Sharpless, Tetrahedron Lett., 1993, 34, 2079.
12 J.-Q. Wang and W.-S. Tian, J. Chem. Soc., Perkin Trans. 1, 1996, 209.
13 (a) V. K. Aggarwal, H. Abdel-Rahman, R. V. H. Jones, H. Y. Lee
and B. D. Reid, J. Am. Chem. Soc., 1994, 116, 5973; (b) V. K.
Aggarwal, J. G. Ford, A. Thompson, R. V. H. Jones and M. C. H.
Standen, J. Am. Chem. Soc., 1996, 118, 7004; (c) V. K. Aggarwal, A.
Thompson, R. V. H. Jones and M. C. H. Standen, Tetrahedron:
Asymmetry, 1995, 6, 2557; (d) V. K. Aggarwal, M. Kalomirl, A. P.
Thomas, Tetrahedron: Asymmetry, 1994, 5, 723; (e) For an excellent
review, see: V. K. Aggarwal, Synlett, 1998, 329.
14 W. E. Weaver and W. M. Whaley, J. Am. Chem. Soc., 1947, 69, 515.
Paper 8/06189K
© Copyright 1999 by the Royal Society of Chemistry
80
J. Chem. Soc., Perkin Trans. 1, 1999, 77–80