8602 Communications to the Editor
Macromolecules, Vol. 36, No. 23, 2003
(2) Zhao, B.; Brittain, W. J . Prog. Polym. Sci. 2000, 25, 677-
710.
brush (Table 1a), a value of 91° for θa was first found
at PS Mn of 15 400 after treatment with CHCl3 but 9600
after annealing. For the mixed brushes prepared from
the 17.0 nm thick PMMA brush (Table 1b), a value of
91° for θa was first noted at PS Mn of 23 900 after CHCl3
treatment but 15 400 after thermal annealing. For the
samples synthesized from a PMMA brush with a thick-
ness of 28.2 nm, the value of 91° for θa was first observed
at PS Mn of 40 000 after treatment with CHCl3 but
26 200 after thermal treatment. Similar values of water
θa were obtained after the treatment with CHCl3 and
annealing in a vacuum at 120 °C again. These results
suggest more complex phase behavior than has been
predicted by theoretical studies. PS has a lower surface
free energy than PMMA,34 which might favor the
appearance of PS chains at the air-brush interface.
Further investigation is underway.
In summary, we successfully synthesized well-defined
mixed PMMA/PS brushes from an asymmetric difunc-
tional initiator-terminated SAM by combining ATRP
and NMRP via a two-step process. To eliminate the
possibilities of chain transfers to the bromine-termi-
nated PMMA chain ends and unreacted ATRP initiator
in Y-SAM in the second polymerization, in situ deha-
logenation was carried out by adding n-Bu3SnH into the
reaction mixtures. It was observed that the brush
thickness increased with the molecular weight of “free”
polymers collected from the solutions in nearly linear
fashions. We found that the transitions of water θa on
three sets of mixed PMMA/PS brushes with increasing
the molecular weight of PS occurred at lower molecular
weights after thermal annealing in a vacuum at 120 °C
for 16 h than those after treatments with CHCl3.
(3) Marko, J . F.; Witten, T. A. Phys. Rev. Lett. 1991, 66, 1541-
1544.
(4) Dong, H. J . Phys. II 1993, 3, 999-1020.
(5) Marko, J . F.; Witten, T. A. Macromolecules 1992, 25, 296-
307.
(6) Brown, G.; Chakrabarti, A.; Marko, J . F. Europhys. Lett.
1994, 25, 239-244.
(7) Zhulina, E.; Balazs, A. C. Macromolecules 1996, 29, 2667-
2673.
(8) Lai, P.-Y. J . Chem. Phys. 1994, 100, 3351-3557.
(9) Soga, K. G.; Zuckermann, M. J .; Guo, H. Macromolecules
1996, 29, 1998-2005.
(10) Muller, M. Phys. Rev. E 2002, 65, 030802.
(11) Minko, S.; Muller, M.; Usov, D.; Scholl, D.; Froeck, C.;
Stamm, M. Phys. Rev. Lett. 2002, 88, 035502.
(12) Sidorenko, A.; Minko, S.; Schenk-Meuser, K.; Duschner, H.;
Stamm, M. Langmuir 1999, 24, 8349-8355.
(13) Wang, J .; Kara, S.; Long, T. E.; Ward, T. C. J . Polym. Sci.,
Polym Chem. 2000, 38, 3742-3750.
(14) Minko, S.; Usov, D.; Goreshnik, E.; Stamm, M. Macromol.
Rapid Commun. 2001, 22, 206-211.
(15) Ionov, L.; Minko, S.; Stamm, M.; Gohy, J .-F.; J erome, R.;
Scholl, A. J . Am. Chem. Soc. 2003, 125, 8302-8306.
(16) Minko, S.; Muller, M.; Motornov, M.; Nitschke, M.; Grundke,
K.; Stamm, M. J . Am. Chem. Soc. 2003, 125, 3896-3900.
(17) Houbenov, N.; Minko, S.; Stamm, M. Macromolecules 2003,
36, 5897-5901.
(18) Zhao, B. Polymer 2003, 44, 4079-4083.
(19) Lemieux, M.; Minko, S.; Usov, D.; Stamm, M.; Tsukruk, V.
V. Langmuir 2003, 19, 6126-6134.
(20) Ejaz, M.; Ohno, K.; Tsujii, Y.; Fukuda, T. Polym. Prepr.
2003, 44, 532-533.
(21) Fadeev, A. Y.; McCarthy, T. J . Langmuir 1999, 15, 7238-
7243.
(22) Ulman, A. Chem. Rev. 1996, 96, 1533-1554.
(23) Wasserman, S. R.; Tao, Y.-T.; Whitesides, G. M. Langmuir
1989, 5, 1074-1087.
(24) Mathauser, K.; Frank, C. W. Langmuir 1993, 9, 3002-
3008.
(25) Offord, D. A.; Griffin, J . H. Langmuir 1993, 9, 3015-
3025.
Ack n ow led gm en t. The authors thank the Univer-
sity of Tennessee at Knoxville (start-up funds) and the
American Chemical Society Petroleum Research Funds
(PRF 40084-G7) for supporting this research.
(26) Kitaev, V.; Seo, M.; McGovern, M. E.; Huang, Y.-J .; Kuma-
cheva, E. Langmuir 2001, 17, 4274-4281.
(27) Lagutchev, A. S.; Song, K. J .; Huang, J . Y.; Yang, P. K.;
Chuang, T. J . Chem. Phys. 1998, 226, 337-349.
(28) Carraro, C.; Yauw, O. W.; Sung, M. M.; Maboudian, R. J .
Phys. Chem. B 1998, 102, 4441-4445.
(29) Matyjaszewski, K.; Xia, J . H. Chem. Rev. 2001, 101, 2921-
2990.
(30) Hawker, C. J .; Bosman, A. W.; Harth, E. Chem. Rev. 2001,
101, 3661-3688.
(31) Husseman, M.; Malmstrom, E. E.; McNamara, M.; Mate,
M.; Mecerreyes, D.; Benoit, D. G.; Hedrick, J . L.; Mansky,
P.; Huang, E.; Russell, T. P.; Hawker, C. J . Macromolecules
1999, 32, 1424-1431.
(32) Coessens, V.; Matyjaszewski, K. Macromol. Rapid Commun.
1999, 20, 66-70.
(33) Details can be found in the Supporting Information.
(34) Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C.
J . Science 1997, 275, 1458-1460.
Su p p or tin g In for m a tion Ava ila ble: Synthesis of Y-
silane, formation of Y-SAM on silicon wafers, dehalogenation
of an ATRP-initiator-terminated SAM, synthesis of PMMA
brushes from Y-SAM and in situ dehalogenation, attempted
ATRP from the dehalogenated ATRP-initiator-terminated
SAM and PMMA brush, synthesis of polystyrene from the
surface by NMRP, and exposure of 1 to the typical dehaloge-
nation conditions. This material is available free of charge via
the Internet at http://pubs.acs.org.
Refer en ces a n d Notes
(1) Halperin, A.; Tirrell, M.; Lodge, T. P. Adv. Polym. Sci. 1992,
100, 31-71.
MA035285P