Notes and References
† 1: 1H NMR (300 MHz, acetone-d6, 298 K, relative to TMS): d 1.40 (s,
18H, tBu), 1.75 (s, 1H, C°CH), 7.70 (dd, 2H, 5- and 5A-pyridyl Hs), 8.60 (d,
2H, 3- and 3A-pyridyl Hs), 8.80 (d, 2H, 6- and 6A-pyridyl Hs). Positive FAB-
MS: ion clusters at m/z 588 {M}+, 560 {M 2 CO}+, 539 {M 2 [C°C–
C°CH]}+. UV–VIS [l/nm (e/dm3mol21cm21)]: THF, 248(16410),
284(17130), 404(3470); CH2Cl2, 310(6100), 396(2690). Elemental analy-
ses. Found: C 50.44, H 4.31, N 4.31. Calc. for 1·0.5H2O: C 50.29, H 4.36,
N 4.69%. 2: 1H NMR (300 MHz, acetone-d6, 298 K, relative to TMS): d
1.50 (s, 18H, tBu), 7.25 (s, 5H, Ph Hs), 7.80 (dd, 2H, 5- and 5A-pyridyl Hs),
8.70 (d, 2H, 3- and 3A-pyridyl Hs), 8.90 (d, 2H, 6- and 6A-pyridyl Hs).
Positive FAB-MS: ion clusters at m/z 665 {M}+, 636 {M 2 CO}+, 539 {M
2
[C°C–C°CPh]}+. UV–VIS [l/nm (e/dm3mol21cm21)]: THF,
298(48570), 340(14610), 416(3220).
‡ Crystal data for 1: [C25H25O3N2Re], M = 587.69, monoclinic, space
group P21/n (no. 14), a = 11.273(3), b = 12.748(1), c = 17.168(2) Å, b =
97.60(4)°, V = 2445.7(7) Å3, Z = 4, Dc = 1.596 g cm23, m(Mo-Ka) =
49.97 cm21, F(000) = 1152, T = 301 K. Convergence for 280 variable
parameters by least-squares refinement on F with w = 4Fo2/s2(Fo2), where
s2(Fo2) = [s2(I) + (0.025Fo2)2] for 2847 reflections with I > 3s(I) was
reached at R = 0.028 and wR = 0.034 with a goodness-of-fit of 1.22. For
2: [C31H29O3N2Re], M = 663.79, monoclinic, space group P21/c (no. 14),
a = 11.048(2), b = 11.795(2), c = 21.935(3) Å, b = 94.23(2)°, V =
2859.9(7) Å3, Z = 4, Dc = 1.542 g cm23, m(Mo-Ka) = 42.83 cm21
,
F(000) = 1312, T = 301 K. Convergence for 334 variable parameters by
least-squares refinement on F with w = 4Fo2/s2(Fo2), where s2(Fo2) =
[s2(I) + (0.030Fo2)2] for 3876 reflections with I > 3s(I) was reached at R
=
0.031 and wR
= 0.040 with a goodness-of-fit of 1.40. CCDC
Fig. 2 Perspective drawing of complex 2 with atomic numbering. Hydrogen
atoms have been omitted for clarity. Thermal ellipsoids were shown at the
50% probability level. Selected bond distances (Å) and bond angles (°):
Re(1)–C(1) 1.913(6), Re(1)–N(1) 2.188(4), Re(1)–N(2) 2.175(4), Re(1)–
C(4) 2.126(5), C(4)–C(5) 1.198(7), C(6)–C(7) 1.189(7), N(1)–Re(1)–N(2)
73.9(1), N(1)–Re(1)–C(1) 171.8(2), C(2)–Re(1)–C(4) 176.3(2),
C(4)–C(5)–C(6) 177.4(6), C(5)–C(6)–C(7) 178.6(6).
182/995.
1 (a) M. Appel, J. Heidrich and W. Beck, Chem. Ber., 1987, 120, 1087; (b)
J. Heidrich, M. Steimann, M. Appel and W. Beck, Organometallics,
1990, 9, 1296; (c) T. Weidmann, V. Weinrich, B. Wagner, C. Robl and
W. Beck, Chem. Ber., 1991, 124, 1363; (d) Y. Zhou, J. W. Seyler, W.
Weng, A. M. Arif and J. A. Gladysz, J. Am. Chem. Soc., 1993, 115, 8509;
(e) J. W. Seyler, W. Weng, Y. Zhou and J. A. Gladysz, Organometallics,
1993, 12, 3802; (f) M. Brady, W. Weng and J. A. Gladysz, J. Chem. Soc.,
Chem. Commun., 1994, 2655; (g) U. H. F. Bunz, Angew. Chem., Int. Ed.
Engl., 1996, 35, 969; (h) T. Weyland, C. Lapinte, G. Frapper, M. J.
Calhorda, J-F. Halet and L. Toupet, Organometallics, 1997, 16, 2024; (i)
H. Schimanke and R. Gleiter, Organometallics, 1998, 17, 275; (j) J.
Manna, K. D. John and M. D. Hopkins, Adv. Organomet. Chem., 1995,
38, 79; (k) N. L. Narvor, L. Toupet and C. Lapinte, J. Am. Chem. Soc.,
1995, 117, 7129.
2 (a) W. Weng, T. Bartik and J. A. Gladysz, Angew. Chem., Int. Ed. Engl.,
1994, 33, 2199; (b) W. Weng, T. Bartik, M. T. Johnson, A. M. Arif and
J. A. Gladysz, Organometallics, 1995, 14, 889; (c) W. Weng, T. Bartik,
M. Brady, B. Bartik, J. A. Ramsden, A. M. Arif and J. A. Gladysz, J. Am.
Chem. Soc., 1995, 117, 11922.
3 (a) V. W. W. Yam, V. C. Y. Lau and K. K. Cheung, Organometallics,
1995, 14, 2749; (b) V. W. W. Yam, V. C. Y. Lau and K. K. Cheung,
Organometallics, 1996, 15, 1740.
Table 1 Photophysical data for complexes 1 and 2
Emission,
Complex
Medium (T/K)
lem/nm (to/ms)
1
THF (298)
CH2Cl2 (298)
Solid (298)
620 ( < 0.1)
604 ( < 0.1)
565 ( < 0.1)
580
Solid (77)
EtOH–MeOH glass (4 : 1 v/v) (77)
THF (298)
Solid (298)
540
2
625 ( < 0.1)
570 ( < 0.1)
570
Solid (77)
4 (a) M. S. Wrighton and D. L. Morse, J. Am. Chem. Soc., 1974, 96, 998;
(b) M. S. Wrighton, D. L. Morse and L. Pdungsap, J. Am. Chem. Soc.,
1975, 97, 2073.
5 R. Eastmond and D. R. M. Walton, Tetrahedron, 1972, 28, 4591.
6 (a) M. Akita, M-C. Chung, A. Sakurai, S. Sugimoto, M. Terada, M.
Tanaka and Y. Moro-oka, Organometallics, 1997, 16, 4882; (b) J. Gil-
Rubio, M. Laubender and H. Werner, Organometallics, 1998, 17,
1202.
7 (a) G. Tapolsky, R. Duesing and T. J. Meyer, Inorg. Chem., 1990, 29,
2285; (b) J. K. Hino, L. D. Ciana, W. J. Dressick and B. P. Sullivan,
Inorg. Chem., 1992, 31, 1072.
8 J. Manna, S. J. Geib and M. D. Hopkins, J. Am. Chem. Soc., 1992, 114,
9199.
the C°C unit is in line with the assignment of a 3MLCT [dp(Re)
? p*(tBu2bpy)] origin and disfavours the assignment of a
3MLCT [dp(Re) ? p*(C°C–C°CR)] or a metal-perturbed 3IL
[p(C°C–C°CR) ? p*(C°C–C°CR)] origin. Given the
similar s-donating properties of the monoacetylide versus the
diynyl unit,9 the much better p-accepting ability of RC°C–
C°C than RC°C would become the dominating factor,
stabilizing the Re dp orbitals to a greater extent, and hence give
rise to a higher energy 3MLCT emission.
V. W.-W. Y. acknowledges financial support from the
Research Grants Council and The University of Hong Kong,
and S. H.-F. C. the receipt of a postgraduate studentship,
administered by The University of Hong Kong.
9 (a) D. L. Lichtenberger and S. K. Renshaw, Organometallics, 1993, 12,
3522; (b) D. L. Lichtenberger, S. K. Renshaw and R. M. Bullock, J. Am.
Chem. Soc., 1993, 115, 3276.
Received in Cambridge, UK, 23rd June 1998; 8/04775H
2122
Chem. Commun., 1998