InVestigation of Ru(II) Complex Ion Pairs
J. Am. Chem. Soc., Vol. 123, No. 44, 2001 11021
lecular interactions are strong enough to stabilize a particular
anion-cation orientation so that other conformations, or dis-
sociated ions, are negligibly populated.7,8 Detailed investigations
were carried out on organic closed shell ion pairs that are
important for phase-transfer catalysis7 and organolithium ion
pairs.8 We decided to apply this methodology for investigating
transition metal complex ion pairs.9 Several Fe(II),9b,c Ru(II),9a-d,9h
Os(II),10 Pd(II),9f Pt(II),9e,g,i Ir(III),11 and Ag(I)12 complex ion
Chart 1
1
pairs were qualitatively investigated by H-NOESY and 19F,
1H-HOESY (heteronuclear Overhauser effect spectroscopy)
NMR experiments in solvents with low dielectric constants, and
the interionic structure was always well-defined. The reason
for the specificity in the cation-anion interactions, which was
generally higher than that found in other types of ion pairs, was
attributed to the noncentrosymmetric electron density distri-
bution7d,11 and/or formation of a dipolar moment in the cationic
moiety facilitated by the high polarizability of the d-metal
orbitals.
Encouraged by the results from the qualitative NOE studies,
we recently started the quantification of the NOEs in order to
estimate the average interionic distances in solution.13 Despite
the fact that the subject needs many precautions, especially
because interionic distances refer, by definition, to distances
between two noncovalently bonded nuclei which are, reasonably,
in motion relative to each other, we decided to attempt such
measurements because (1) the main presence of only one type
of intimate ion pair in solution should limit the types of motions
and (2) the estimations of average interionic distances could be
very precious to investigate transition metal catalysts in the
environment where they really “work”.
In this paper, we report the synthesis and the qualitative
interionic investigation in solution of trans-[Ru(COMe){(pz2)-
CH2}(CO)(PMe3)2]X (X- ) BPh4-, 1a; BPh3Me-, 1b; BPh3-
(n-Bu)-, 1c; BPh3(n-Hex)-, 1d; B(3,5-(CF3)2(C6H3))4-, 1e;
PF6-, 1f; and BF4-, 1g; pz ) pyrazol-1-yl-ring), complexes
bearing both symmetric and unsymmetric counteranions. Pre-
liminary results were already communicated.13 The results of
our efforts to determine the average interionic distances in
solution for complexes 1a,b by using the measurements of the
complete kinetic of NOE build-up are described. Furthermore,
two methodologies were used to determine the rotational
correlation times for complex 1a and for the neutral isosteric
trans-[Ru(COMe){(pz2)BH2}(CO)(PMe3)2] (2) complex. The
results are presented to validate average interionic distance
values obtained.
The twofold aim of this study was (1) to test both the
qualitative and quantitative NOE NMR methodologies for ion
pair investigations in solution by (2) determining the relative
cation-anion position for complexes 1a-g as a function of
anion nature, solvent, and temperature. Even if the chemistry
of such complexes is not affected by ion pairing, they have been
chosen as “model” compounds for developing and checking the
NMR investigation methodologies, because they are relatively
easy to synthesize and present all the suitable NMR properties.
The methodologies validated in this study have already been
used9f,g and will be further applied to chemical systems whose
reactivity or catalysis is affected by cation-anion interactions.
(7) See for examples: (a) Pochapsky, T. C.; Stone, P. M. J. Am. Chem.
Soc. 1990, 112, 6714. (b) Pochapsky, T. C.; Stone, P. M. J. Am. Chem.
Soc. 1991, 113, 1460. (c) Pochapsky, T. C.; Wang, A.; Stone, P. M. J. Am.
Chem. Soc. 1993, 115, 11084. (d) Mo, H.; Wang, A.; Stone-Wilkinson, P.
M.; Pochapsky, T. C. J. Am. Chem. Soc. 1997, 119, 11666. (e) Hofstetter,
C.; Stone-Wilkinson, P. M.; Pochapsky, T. C. J. Org. Chem. 1999, 64,
8794. (f) Hofstetter, C.; Pochapsky, T. C. Magn. Reson. Chem. 2000, 38,
90. For a review on intermolecular NOE investigations see: Mo, H.;
Pochapsky, T. C. Prog. Nucl. Magn. Reson. Spectrosc. 1997, 30, 1.
(8) See for examples: (a) Bauer, W.; Mu¨ller, G.; Schleyer, P. v. R.
Angew. Chem., Int. Ed. Engl. 1986, 25, 1103. (b) Avent, A. G.; Eaborn,
C.; El-Kheli, M. N. A.; Molla, M. E.; Smith, J. D.; Sullivan, A. C. J. Am.
Chem. Soc. 1986, 108, 3854. (c) Bauer, W.; Clark, T.; Schleyer, P. v. R. J.
Am. Chem. Soc. 1987, 109, 970. (d) Gu¨nther, H.; Moskau, D.; Bast, P.;
Schmalz, D. Angew. Chem., Int. Ed. Engl. 1987, 26, 1112. (e) Bauer, W.;
Schleyer, P. v. R. Magn. Reson. Chem. 1988, 26, 827. (f) Bauer, W.;
Klusener, P. A. A.; Harde, S.; Kanters, J. A.; Duisenburg, A. J. M.;
Brandsma, L.; Schleyer, P. v. R. Organometallics 1988, 7, 552. (g) Hoffman,
D.; Bauer, W.; Schleyer, P. v. R. J. Chem. Soc., Chem. Commun. 1990,
208. (h) Bauer, W.; Clark, T.; Schleyer, P. v. R. AdV. Carbanion Chem.
1992, 1, 89. (i) Hilmersson, G.; Arvidsson, P. I.; Davidson, O¨ .; Hakansson,
M. J. Am. Chem. Soc. 1998, 120, 8143. (l) Gschwind, R. M.; Rajamohanan,
P. R.; John, M.; Boche, G. Organometallics 2000, 19, 2868.
(9) (a) Bellachioma, G.; Cardaci, G.; Macchioni, A.; Reichenbach, G.;
Terenzi, S. Organometallics 1996, 15, 4349. (b) Macchioni, A.; Bellachioma,
G.; Cardaci, G.; Gramlich, V.; Ru¨egger, H.; Terenzi, S.; Venanzi, L. M.
Organometallics 1997, 16, 2139. (c) Bellachioma, G.; Cardaci, G.; Gramlich,
V.; Macchioni, A.; Valentini, M.; Zuccaccia, C. Organometallics, 1998,
17, 5025. (d) Macchioni, A.; Bellachioma, G.; Cardaci, G.; Cruciani, G.;
Foresti, E.; Sabatino, P.; Zuccaccia, C. Organometallics 1998, 17, 5549.
(e) Romeo, R.; Nastasi, N.; Monsu` Scolaro, L.; Plutino, M. R.; Albinati,
A.; Macchioni, A. Inorg. Chem. 1998, 37, 5460. (f) Macchioni, A.;
Bellachioma, G.; Cardaci, G.; Travaglia, M.; Zuccaccia, C.; Milani, B.;
Corso, G.; Zangrando, E.; Mestroni, G.; Carfagna, C.; Formica, M.
Organometallics 1999, 18, 3061. (g) Zuccaccia, C.; Macchioni, A.; Orabona,
I.; Ruffo, F. Organometallics 1999, 18, 4367. (h) Bellachioma, G.; Cardaci,
G.; D’Onofrio, F.; Macchioni, A.; Sabatini, S.; Zuccaccia, C. Eur. J. Inorg.
Chem. 2001, 1605. (i) Romeo, R.; Fenech, L.; Monsu` Scolaro, L.; Albinati,
A.; Macchioni, A.; Zuccaccia, C. Inorg. Chem. 2001, 40, 3293.
Results and Discussion
Synthesis. Complexes 1b,c (Chart 1) were synthesized by
the reaction of cis,trans-RuI(Me)(CO)2(PMe3)2 with pz2(CH2)
in methanol in the presence of a large excess of K[BPh3R]
(R ) Me (1b), n-Bu (1c)). Because of (a) the migration of the
methyl onto a cis carbonyl group, (b) the ionization of the Ru-I
bond, and (c) the coordination of the bidentate N,N-ligand
(pz2(CH2)), the acetyl ionic complex trans-[Ru(COMe){(pz2)-
CH2}(CO)(PMe3)2]I forms that exchanges the I- counteranion
with BPh3R-, affording the precipitation of the desired product.
The preparation of complex 1d (Chart 1) was similar, but owing
(10) Bellachioma, G.; Cardaci, G.; Macchioni, A.; Valentini, F.; Zuc-
caccia, C.; Foresti, E.; Sabatino, P. Organometallics 2000, 19, 4320.
(11) Macchioni, A.; Zuccaccia, C.; Clot, E.; Gruet, K.; Crabtree, R. H.
Organometallics 2001, 20, 2367.
(12) Bachechi, F.; Burini, A.; Galassi, R.; Macchioni, A.; Pietroni, B.
R.; Ziarelli, F.; Zuccaccia, C. J. Organomet. Chem. 2000, 593-594, 392.
(13) Zuccaccia, C.; Bellachioma, G.; Cardaci, G.; Macchioni, A. Orga-
nometallics 1999, 18, 1.