COMMUNICATIONS
spin system, dA
27.6, dX 17.2, JAX 44 Hz; 13C{1H} NMR (CD2Cl2,
hours, with the aryl compound trans-[Pd(C6H4-o-
CMe3)(OAc)(PMe3)2] (5) being formed in good yield. Only
10% isomerization is observed after three hours in C6D6
under the same reaction conditions.
208C): d 33.0 (s, CMe3), 36.9 (s, CMe3), 151.7 (d, 2JCP 107 Hz, Cq arom.).
Received: May 5,
Revised version: July 31, 1998 [Z11819IE]
German version: Angew. Chem. 1999, 111, 199 ± 203
Keywords: C-H activation ´ metallacycles ´ palladium ´ pi
interactions ´ protonations
Me3P
AcO
CH2CMe2Ph
PMe3
Me3P
AcO
80 °C
Pd
Pd
CD3OD
[1] a) A. D. Ryabov, Chem. Rev. 1990, 90, 403; b) G. R. Newkome, W. E.
Puckett, V. K. Gupta, Chem. Rev. 1986, 86, 451; c) G. E. Kiefer, Chem.
Rev. 1986, 86, 151; d) I. Omae, Chem. Rev. 1989, 93, 155; for recent
examples of cyclometalation reactions, see e) T. Hascall, V. Murphy,
G. Parkin, Organometallics 1996, 15, 3910; f) N. S. Radu, S. L.
Buchwald, S. Berk, C. J. Burns, Organometallics 1996, 15, 3913;
g) R. H. Zambrano, P. R. Sharp, C. L. Barnes, Organometallics 1995,
PMe3
5
1b
In closing, some comments on the chemical significance of
the cationic species B seem appropriate. As noted above, B is
involved as an intermediate in both the cyclometalation and
the isomerization of the neophyl ligand although the addi-
tional participation in the key C ± H bond activation reaction
of an arenonium ion or an agostic intermediate appears likely.
The lability of B contrasts with the relative inertness of the
neutral triflate complex 3. This observation suggests that a
positive charge at the Pd center may be needed to achieve the
metalation of the pendant aromatic ring. In other words,
anion dissociation rather than phosphane dissociation could
be required for the activation of the C ± H bond in compounds
of type 1. This proposal is in agreement with previous findings
on somewhat related reactions.[23] Moreover, it is in accord
with our failure to cyclometalate the bis(alkyl) complex
[Pd(CH2CMe2Ph)2(PMe3)2].[11e]
Â
14, 3607; h) R. Bosque, C. Lopez, J. Sales, P. Tramuns, X. Solans, J.
Chem. Soc. Dalton Trans. 1995, 2445; i) J. C. Jeffrey, E. Schatz, E. H.
Tilley, M. D. Ward, J. Chem. Soc. Dalton Trans. 1995, 825; j) P. W.
Jennings, L. L. Johnson, Chem. Rev. 1994, 94, 2241; k) M. Catellani,
G. P. Chiusoli, Gazz. Chim. Ital. 1993, 123, 1; l) M. Catellani, M. C.
Fagnola, Angew. Chem. 1994, 106, 2559; Angew. Chem. Int. Ed. Engl.
1994, 33, 2421; m) C. Liu, C. S. Li, C. H. Cheng, Organometallics 1994,
13, 18.
[2] a) A. E. Shilov, G. B. Shulꢁpin, Chem. Rev. 1997, 97, 2879; b) B. A.
Arndtsen, R. G. Bergman, T. A. Morley, T. H. Peterson, Acc. Chem.
Res. 1995, 28, 154.
[3] a) A. J. Canty, Acc. Chem. Res. 1992, 25, 83; b) A. J. Canty in
Comprehensive Organometallic Chemistry II. Vol. 9 (Eds: E. W. Abel,
F. G. A. Stone, G. Wilkinson), Pergamon, Oxford, 1995, p. 225.
[4] a) R. F. Heck, Palladium Reagents in Organic Chemistry; Academic
Press, London, 1985; b) J. Vicente, J. A. Abad, J. Gil-Rubio, Organo-
metallics 1996, 15, 350; c) U. Aulwurm, J. V. Melchinger, H. Kisch,
Organometallics 1995, 14, 3385; d) J. Spencer, M. Pfeffer, N. Krystakis,
J. Fischer, Organometallics 1995, 14, 2214, and references therein.
[5] a) E. Lindner, Adv. Heterocyclic Chem. 1986, 39, 237; b) D. S.
Chappell, D. J. Cole-Hamilton, Polyhedron 1982, 1, 739; c) G. Ingrosso
in Reactions of Coordinated Ligands (Ed.: P. S. Braterman), Plenum,
New York, 1986, p. 639; d) I. Ojima, M. Tzamarioudaki, Z. Li, R. J.
Donovan, Chem. Rev. 1996, 96, 635.
[6] Applied Homogeneous Catalysis with Organometallic Compounds
(Eds: B. Cornelis, W. A. Herrmann), VCH, Weinheim, 1996.
[7] a) C. W. Parshall, Acc. Chem. Res. 1970, 3, 139; b) R. Di Cosimo, S. S.
Moore, A. F. Sowinski, G. M. Whitesides, J. Am. Chem. Soc. 1982, 104,
124; c) D. C. Griffiths, G. B. Young, Organometallics 1989, 8, 875.
d) A. D. Ryabov, I. K. Sakodinskaya, A. K. Yatsimirsky, J. Chem. Soc.
Dalton Trans. 1985, 2629; e) H. L. Holcomb, S. Nekanishi, T. C. Flood,
Organometallics 1996, 15, 4228.
Experimental Section
2 and 3: The metallacyclic precursor 2 was prepared by treating a solution
of complex 1a (0.21 g, 0.5 mmol) in THF (30 mL) at
508C with
NaN(SiMe3)2 (0.85 mL, 0.6m solution in toluene, 0.5 mmol) and was
isolated as white crystals (ca. 40% yield) from its solutions in diethyl ether
or diethyl ether/petroleum ether mixtures. Elemental analysis calcd for
C16H30P2Pd: C 49.18, H 7.68; found: C 49.22, H 7.56; 1H NMR (CD2Cl2,
208C): d 2.20 (dd, 2H, JHP 8.8, 5.7 Hz, CH2); 31P{1H} NMR (CD2Cl2,
3
208C) AX spin system, dA
22.9, dX 27.9, JAX 23 Hz; 13C{1H} NMR
2
2
(CD2Cl2, 208C): d 52.5 (dd, JCP 95, 9 Hz, CH2), 169.2 (dd, JCP 123,
14 Hz, Cq arom.). A solution of HOTf in Et2O (3.8 mL, 0.53m, 2 mmol) was
added dropwise to a cold solution ( 808C) of a pure, crystalline sample of
this compound (0.39 g, 1 mmol) in Et2O (40 mL). The mixture was stirred
for 2.5 h at room temperature, the solvent evaporated under vacuum, and
[8] A. J. Canty, G. van Koten, Acc. Chem. Res. 1995, 28, 406.
[9] a) D. M. Grove, G. van Koten, J. N. Louwen, J. G. Noltes, A. L. Spek,
H. J. C. Ubbels, J. Am. Chem. Soc. 1982, 104, 6609; b) J. Terhijden, G.
van Koten, I. C. Vinke, A. L. Spek, J. Am. Chem. Soc. 1985, 107, 2891.
the residue extracted with Et2O. The white precipitate of HPMe3 TfO was
separated by filtration, and the solution concentrated and cooled overnight
at 208C. The product was isolated as colorless crystals (290 mg, 75%).
Elemental analysis calcd for C14H22F3O3PSPd: C 36.18, H 4.77; found: C
Â
Â
[10] a) L. R. Falvello, J. Fornies, R. Navarro, V. Sicilia, M. Tomas, J. Chem.
Â
Â
Â
Soc. Dalton Trans. 1994, 3143; b) J. Fornies, B. Menjon, N. Gomez, M.
36.34, H 4.60; 1H NMR (CD2Cl2, 208C): d 1.46 (d, 2H, JHP 5.6 Hz,
3
Â
Tomas, Organometallics 1992, 11, 1187; c) C. S. Li, C. H. Cheng, S. L.
CH2); 31P{1H} NMR (CD2Cl2, 208C): d 2.85 s; 13C{1H} NMR (CD2Cl2,
Wang, J. Chem. Soc. Chem. Commun. 1991, 710; d) E. Wehman, G.
van Koten, T. B. H. Jastrzbeski, H. Ossor, M. Pfeffer, J. Chem. Soc.
Dalton Trans. 1988, 2975.
2
2
208C): d 24.3 (d, JCP 4 Hz, CH2), 121.8 (d, JCP 13 Hz, Cq arom.),
123.2 (s, 2CH arom.), 131.2 (s, 1CH arom.), 132.3 (s, 2CH arom.).
Â
4: A solution of compound 2 (0.1 g, ca. 0.25 mmol) in Et2O (40 mL) was
cooled at 408C, and treated with [H(OEt2)2]BAr4 (0.25 g, 0.25 mmol)
dissolved in Et2O (10 mL). The mixture was stirred for 1 h at room
temperature. The solvent was then removed in vacuo, and the residue
extracted with Et2O (30 mL). The volume was reduced to approximately
one half and petroleum ether added until the solution became slightly
cloudy. After cooling the mixture at 208C overnight, the product was
collected as colorless crystals, which were filtered, washed with petroleum
ether, and dried (140 mg, 42%). Elemental analysis calcd for
C51H52BF24P3Pd: C 46.02, H 3.94; found: C 46.37, H 3.88; 1H NMR
(CD2Cl2, 208C): d 1.44 (s, 9H, CMe3); 31P{1H} NMR (CD2Cl2, 208C) AX2
[11] a) E. Carmona, E. Gutierrez-Puebla, J. M. Marín, A. Monge, M.
Paneque, M. L. Poveda, C. Ruiz, J. Am. Chem. Soc. 1989, 111, 2883;
b) M. C. Nicasio, PhD thesis, Universidad de Sevilla, 1993.
[12] a) D. J. Cardenas, C. Mateo, A. M. Echevarren, Angew. Chem. 1994,
Â
106, 2529; Angew. Chem. Int. Ed. Engl. 1994, 33, 2445; b) C. Mateo,
D. J. Cardenas, C. Fernandez-Rivas, A. M. Echevarren, Chem. Eur. J.
Â
Â
1996, 2, 1596.
[13] Crystallographic data for 3:
a
yellow irregular crystal of
PdC14H22F3O3PS having approximate dimensions of 0.26 Â 0.15 Â
0.34 mm was mounted in a glass capillary under argon. All measure-
ments were performed on a Rigaku AFC6S diffractometer with
150
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3801-0150 $ 17.50+.50/0
Angew. Chem. Int. Ed. 1999, 38, No. 1/2