C O M M U N I C A T I O N S
This derivative affords terpyridine-DNA conjugates that serve as
a key building block to create molecular modules. These molecular
modules are easily generated by mixing terpyridine-DNA conju-
gates with metals and are successfully employed for the construction
of DNA triangles. Taken together, a bis(terpyridine)Fe(II) complex
demonstrates its potential for an alternative to the Holliday junction
in DNA-based self-assembly. Further study for the preparation of
terpyridine derivatives functionalizable with multiple oligonucle-
otides in a geometrically distinct way using solid-phase DNA
synthesis is in progress.
Acknowledgment. This work was financially supported by the
Korea Research Foundation Grant (KRF-2003-015-C00377). Fel-
lowship support from the BK21 and CRM programs (J.S.C.,
C.W.K., K.J., and J.W.Y.) is gratefully acknowledged.
Supporting Information Available: Detailed synthetic procedures
and characterization. This material is available free of charge via the
Figure 1. (Upper) Sequences of DNA strands A, B, and C and their
complementary oligonucleotides A′, B′, and C′ respectively linked to a
central bis(terpyridine)Fe(II) complex X in the modules 13-17. Two
complementary DNA strands a and a′ contain the reverse sequences of A
and A′, respectively. (Lower) Gel-shift analysis of the formation of DNA
triangles by PAGE on a 15% nondenaturing polyacrylamide gel.6 The
modules 13 and 14 were labeled with 32P at the 5′-end of DNA strands.
Each lane contains an equimolar mixture of component modules indicated
at the top.
References
(1) (a) Lehn, J.-M. Supramolecular Chemistry: Concepts and PerspectiVes;
VCH: Weinheim, 1995. (b) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem.
ReV. 2000, 100, 853-908. (c) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N.
W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705-714.
(2) (a) Seeman, N. C. Nature 2003, 421, 427-431. (b) Seeman, N. C.
Biochemistry 2003, 42, 7259-7269. (c) LaBean, T. H.; Yan, H.; Kopatsch,
J.; Liu, F.; Winfree, E.; Reif, J. H.; Seeman, N. C. J. Am. Chem. Soc.
2000, 122, 1848-1860. (d) Mao, C.; Sun, W.; Seeman, N. C. J. Am. Chem.
Soc. 1999, 121, 5437-5443. (e) Winfree, E.; Liu, F.; Wenzler, L. A.;
Seeman, N. C. Nature 1998, 394, 539-544. (f) Yan, H.; Park, S. H.;
Finkelstein, G.; Reif, J. H.; LaBean, T. H. Science 2003, 301, 1882-
1884. (g) Feng, L.; Park, S. H.; Reif, J. H.; Yan, H. Angew. Chem., Int.
Ed. 2003, 42, 4342-4346. (h) Yan, H.; LaBean, T. H.; Feng, L.; Reif, J.
H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 8103-8108. (i) Liu, D.; Wang,
M.; Deng, Z.; Walulu, R.; Mao, C. J. Am. Chem. Soc. 2004, 126, 2324-
2325. (j) Shih, W. M.; Quispe, J. D.; Joyce, G. F. Nature 2004, 427,
618-621. (k) Stewart, K. M.; McLaughlin, L. W. J. Am. Chem. Soc. 2004,
126, 2050-2057. (l) Stewart, K. M.; McLaughlin, L. W. Chem. Commun.
2003, 2934-2935. (m) Gothelf, K. V.; Thomsen, A.; Nielsen, M.; Clo´,
E.; Brown, R. S. J. Am. Chem. Soc. 2004, 126, 1044-1046. (n) Czlapinski,
J. L.; Sheppard, T. L. J. Am. Chem. Soc. 2001, 123, 8618-8619. (o) Endo,
M.; Majima, T. J. Am. Chem. Soc. 2003, 125, 13654-13655. (p) Scheffler,
M.; Dorenbeck, A.; Jordan, S.; Wu¨stefeld, M.; von Kiedrowski, G. Angew.
Chem., Int. Ed. 1999, 38, 3312-3315.
(3) (a) Park, S.-J.; Lazarides, A. A.; Mirkin, C. A.; Letsinger, R. L. Angew.
Chem., Int. Ed. 2001, 40, 2909-2912. (b) Elghanian, R.; Storhoff, J. J.;
Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078-
1081. (c) Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J.
Nature 1996, 382, 607-609. (d) Alivisatos, A. P.; Johnsson, K. P.; Peng,
X.; Wilson, T. E.; Loweth, C. J.; Bruchez, M. P., Jr.; Schultz, P. G. Nature
1996, 382, 609-611. (e) Braich, R. S.; Chelyapov, N.; Johnson, C.;
Rothemund, P. W. K.; Adleman, L. Science 2002, 296, 499-502. (f)
Adleman, L. M. Science 1994, 266, 1021-1024. (g) Liu, Q.; Wang, L.;
Frutos, A. G.; Condon, A. E.; Corn, R. M.; Smith, L. M. Nature 2000,
403, 175-179. (h) Mao, C.; LaBean, T. H.; Reif, J. H.; Seeman, N. C.
Nature 2000, 407, 493-496. (i) Benenson, Y.; Paz-Elizur, T.; Adar, R.;
Keinan, E.; Livneh, Z.; Shapiro, E. Nature 2001, 414, 430-434. (j) Yurke,
B.; Turberfield, A. J.; Mills, A. P., Jr.; Simmel, F. C.; Neumann, J. L.
Nature 2000, 406, 605-608. (k) Yan, H.; Zhang, X.; Shen, Z.; Seeman,
N. C. Nature 2002, 415, 62-65. (l) Braun, E.; Eichen, Y.; Sivan, U.;
Ben-Yoseph, G. Nature 1998, 391, 775-778.
equimolar mixture of two different terpyridine-DNA conjugates
in H2O (Figure 1, Upper). Each of these modules contains a central
bis(terpyridine)Fe(II) complex X flanking two single-stranded
DNAs that differ in sequence and length. The sequences of DNA
strands A, B, and C in the modules are complementary to those of
A′, B′, and C′, respectively. As controls, two complementary DNA
strands a and a′ with reverse sequences of A and A′, respectively
were also synthesized. The length difference between two DNA
strands attached to a bis(terpyridine)Fe(II) complex allowed facile
separation of heterodimeric modules from homodimeric ones using
PAGE on a 20% denaturing polyacrylamide gel after they were
formed upon complexation of an Fe(II) metal ion by two terpyri-
dine-DNA conjugates.6 The relative orientation of two single-
stranded DNAs in each module is constrained at a 90° angle due
to their positioning on a bis(terpyridine)Fe(II) complex.
Triangular assembly of modules 13-17 was initiated simply by
annealing an equimolar mixture of the component modules in TE
buffer and thereby allowing intermodular DNA duplex formation
(Figure 1, Lower). Proper formation of DNA triangles was
confirmed by comparison with a control series of linear assemblies
on a 15% nondenaturing polyacrylamide gel.6 DNA triangles were
formed only when three modules were annealed such that the
sequence of each DNA strand in one module was complementary
to that in the other in a cyclic way (Figure 1, Lower, lanes 5 and
12). DNA triangles migrated more slowly than linear assemblies
despite the same length and sequence composition (Figure 1, Lower,
lanes 5, 12 vs 6, 11, respectively). DNA triangles appeared as a
single band, indicating that their structure is not destabilized by
the presence of bis(terpyridine)Fe(II) complex junctions. Formation
of significant quantities (>99%) of DNA triangles precluded the
presence of higher cyclic species. It is noteworthy that these
junctions are flexible enough to accommodate the inner angles of
about 48°, 58°, and 74° and side lengths of 17, 15, and 13 base
pairs in DNA triangles. Thus, DNA precisely placed three bis-
(terpyridine)Fe(II) complexes at nanoscale distances in triangular
arrays.
(4) (a) Giordano, C.; Minisci, F.; Vismara, E.; Levi, S. J. Org. Chem. 1986,
51, 536-537. (b) Ishihara, M.; Tsuneya, T.; Shiga, M.; Kawashima, S.;
Yamagishi, K.; Yoshida, F.; Sato, H.; Uneyama, K. J. Agric. Food. Chem.
1992, 40, 1647-1655. (c) Potts, K. T.; Cipullo, M, J.; Ralli, P.;
Theodoridis, G. J. Org. Chem. 1982, 47, 3027-3038. (d) Potts, K. T.;
Ralli, P.; Theodoridis, G.; Winslow, P. Org. Synth. 1985, 64, 189-195.
(e) Potts, K. T.; Winslow, P. A. J. Org. Chem. 1985, 50, 5405-5409. (f)
Stevens, R. V.; Beaulieu, N.; Chan, W. H.; Daniewski, A. R.; Takeda,
T.; Waldner, A.; Williard, P. G.; Zutter, U. J. Am. Chem. Soc. 1986, 108,
1039-1049. (g) Heller, M.; Schubert, U. S. J. Org. Chem. 2002, 67,
8269-8272. (h) Sauvage, J.-P.; Collin, J.-P.; Chambron, J.-C.; Guillerez,
S.; Coudret, C.; Balzani, V.; Barigelletti, F.; De Cola, L.; Flamigni, L.
Chem. ReV. 1994, 94, 993-1019.
(5) Gait, M. J., Ed. Oligonucleotide Synthesis: A Practical Approach; IRL
Press: Oxford, 1984; pp 45-49.
(6) Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular Cloning:
A
Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory: Cold Spring
Harbor, NY, 1989.
In conclusion, we describe the synthesis of a terpyridine
derivative that can be site-specifically linked to an oligonucleotide.
JA048537Q
9
J. AM. CHEM. SOC. VOL. 126, NO. 28, 2004 8607