groups.7 Structural modification of BINAP has been exten-
sively examined to improve enantioselectivity of the asym-
metric reactions catalyzed by transition-metal/BINAP com-
plexes. Notable examples include modifications of the phenyl
groups of the -PPh2 moieties of BINAP8 and the develop-
ment of atropisomeric bisphosphines based on modified
biaryls such as H8-BINAP,9 MeO-biphep,10 biphemp,11 and
segphos.12
Among the 4,4′-disubstituted BINAPs, those with Me3Si-
or (HO)2P(O)-substituents have been shown to give the
highest enantioselectivity in Ru-catalyzed asymmetric hy-
drogenation reactions.13 Since some of the reactions exam-
ined here require aprotic conditions, 4,4′-(Me3Si)2-BINAP
(tms-BINAP) was chosen as a representative of the 4,4′-
disubstituted BINAPs for the present study (Figure 1).
Recently, we have reported a novel strategy of BINAP
modification by introducing sterically encumbered substit-
uents at the 4- and 4′-positions of the binaphthyl skeleton,
which drastically enhances enantioselectivity in the Ru-
catalyzed asymmetric hydrogenation of a variety of carbonyl
compounds.13 Herein, we wish to report the effectiveness of
this novel class of modified BINAPs in transition-metal-
catalyzed asymmetric carbon-carbon bond-forming reac-
tions. Four different asymmetric carbon-carbon bond-
forming reactions were examined in this work: (1) Pd-
catalyzed asymmetric synthesis of axially chiral allenes from
2-bromo-1,3-dienes,14 (2) Pd-catalyzed asymmetric allylation
of prochiral nucleophiles,15 (3) Rh-catalyzed conjugate
addition of ArB(OH)2 to R,â-unsaturated carboxylic es-
ters,5b-c,16 and (4) Pd-catalyzed asymmetric allylic alkylation
reactions.17 In the first three reactions, BINAP has shown
superiority over other chiral phosphines; however, the
reported enantioselectivity still has room for further improve-
ment.
Figure 1. BINAP and 4,4′-(Me3Si)2-BINAP (tms-BINAP).
The effect of tms-substituents was first examined in the
Pd-catalyzed asymmetric synthesis of axially chiral allenes.14
For a direct comparison between BINAP and tms-BINAP,
two reactions, one with BINAP and the other with tms-
BINAP, were set up simultaneously and carried out side by
side under identical conditions. The results are summarized
in Table 1. In the previous report on the asymmetric allene
(6) Shibata, T.; Takagi, K. J. Am. Chem. Soc. 2000, 122, 9852.
(7) Yanagisawa, A.; Nakashima, H.; Ishiba, A.; Yamamoto, H. J. Am.
Chem. Soc. 1996, 118, 4723.
(8) (a) Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi,
H.; Taketomi, T.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629.
(b) Mashima, K.; Kusano, K.; Sato, N.; Matsumura, Y.; Nozaki, K.;
Kumobayashi, H.; Sayo, N.; Hori, T.; Ishizaki, T.; Akutagawa, S.; Takaya,
H. J. Org. Chem. 1994, 59, 3064. (c) Gladiali, S.; Dore, A.; Fabbri, D.;
Medici, S.; Pirri, G.; Pulacchini, S. Eur. J. Org. Chem. 2000, 2861.
(9) (a) Zhang, X.; Mashima, K.; Koyano, K.; Sayo, N.; Kumobayashi,
H.; Akutagawa, S.; Takaya, H. Tetrahedron Lett. 1991, 32, 7283. (b) Zhang,
X.; Mashima, K.; Koyano, K.; Sayo, N.; Kumobayashi, H.; Akutagawa,
S.; Takaya, H. J. Chem. Soc., Perkin Trans. 1 1994, 2309.
(10) Schmid, R.; Foricher, J.; Cereghetti, M.; Scho¨nholzer, P. HelV. Chim.
Acta 1991, 74, 370.
(11) (a) Schmid, R.; Cereghetti, M.; Heiser, B.; Scho¨nholzer, P.; Hansen,
H. J. HelV. Chim. Acta 1988, 71, 897. (b) Frejd, T.; Klingstedt, T. Acta
Chem. Scand. 1989, 43, 670.
(12) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura,
T.; Kumobayashi, H. AdV. Synth. Catal. 2001, 343, 264.
(13) (a) Hu, A.; Ngo, H. L.; Lin, W. Angew. Chem., Int. Ed. 2004, 43,
2501. (b) Hu, A.; Ngo, H. L.; Lin, W. Org. Lett. 2004, 6, 2937. (c) Hu, A.;
Lin, W. Org. Lett. 2005, 7, 455. (d) Ngo, H. L.; Lin, W. J. Org. Chem.
2005, 70, 1177.
(14) (a) Ogasawara, M.; Ikeda, H.; Hayashi, T. Angew. Chem., Int. Ed.
2000, 39, 1042. (b) Ogasawara, M.; Ikeda, H.; Nagano, T.; Hayashi, T.
Org. Lett. 2001, 3, 2615. (c) Ogasawara, M.; Ikeda, H.; Nagano, T.; Hayashi,
T. J. Am. Chem. Soc. 2001, 123, 2089. (d) Ogasawara, M.; Ueyama, K.;
Nagano, T.; Mizuhata, T.; Hayashi, T. Org. Lett. 2003, 5, 217.
(15) (a) Kuwano, R.; Ito, Y. J. Am. Chem. Soc. 1999, 121, 3236. (b)
Kuwano, R.; Nishio, R.; Ito, Y. Org. Lett. 1999, 1, 837. (c) Kuwano, R.;
Uchida, K.; Ito, Y. Org. Lett. 2003, 5, 2177.
Table 1. Pd-Catalyzed Asymmetric Synthesis of Axially Chiral
Allenesa
% eec
entry
1
2
base
L*
solvent yieldb/% (config)d
1a
1b
2a
2b
1a 2m CsOtBu (R)-BINAP
CH2Cl2 70 (3am) 74 (R)
72 (3am) 85 (R)
(R)-tms-BINAP
(R)-BINAP
(R)-tms-BINAP
1a 2n NaH
THF
THF
THF
80 (3an) 70 (R)
82 (3an) 80 (R)
73 (3bo) 53 (R)
83 (3bo) 61 (R)
76 (3cp) 62 (R)
98 (3cp) 77 (R)
3ae,f 1b 2o CsOtBu (R)-BINAP
3be,f
4a
4b
(R)-tms-BINAP
(R)-BINAP
1c 2p KH
(R)-tms-BINAP
a All the reaction were carried out with 1 (0.50 mmol), 2 (0.55 mmol),
and base (0.55 mmol) in a given solvent (5.0 mL) for 24 h in the presence
of a Pd catalyst (10 mol %) generated from Pd(dba)2 and the chiral
phosphine. b Isolated yield by chromatography on alumina. c Determined
by chiral HPLC (Chiralpak AD-H (3am and 3an), Chiralcel OD-H (3bo
and 3cp)). d The absolute configurations were deduced by the Lowe-
Brewster rule (ref 19). e With 5 equiv of 2o with respect to 1b. f At 0 °C.
(16) Takaya, Y.; Senda, T.; Kurushima, H.; Ogasawara, M.; Hayashi,
T. Tetrahedron: Asymmetry 1999, 10, 4047.
(17) For reviews: (a) Trost, B. M.; Chulbom, L. In Catalytic Asymmetric
Synthesis, 2nd ed.; Ojima, I., Ed.; VCH: New York, 2000; p 593. (b) Pfaltz,
A.; Lautens, M. In ComprehensiVe Asymmetric Catalysis; Jacobsen, E. N.,
Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 2, Chapter
24. (c) Trost, B. M.; Van Vranken, D. L. Chem. ReV. 1996, 96, 395. (d)
Hayashi, T. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New
York, 1993; p 325. (e) Frost, C. G.; Howarth, J.; Williams, J. M. J.
Tetrahedron: Asymmetry 1992, 3, 1089.
synthesis, malonate derivatives, such as 2m and 2n, were
used as pronucleophiles.14c,d While the Pd/BINAP catalyst
gave the axially chiral allene 3am with 74% ee for the
reaction of the tBu-substituted bromodiene 1a with 2m (entry
2882
Org. Lett., Vol. 7, No. 14, 2005