2854
A. Vik et al. / Tetrahedron Letters 51 (2010) 2852–2854
18. Hansen, T. V.; Skattebøl, L. Tetrahedron Lett. 2004, 45, 2809–2811.
19. Anwar, H. F.; Hansen, T. V. Org. Lett. 2009, 11, 587–588.
20. Flock, S.; Lundquist, M.; Skattebøl, L. Acta Chem. Scand. 1999, 53, 436–445.
21. Hamberg, M.; Chechetkin, I. R.; Grechkin, A. N.; Ponce de Leon, I.; Castresana,
C.; Bannenberg, G. Lipids 2006, 41, 499–506.
22. Viala, J.; Santelli, M. J. Org. Chem. 1988, 53, 6121–6123.
23. Maryanoff, B. E.; Reitz, A. B.; Duhl-Emswiler, B. A. J. Am. Chem. Soc. 1985, 107,
217–226.
using sodium chlorite in aqueous acetonitrile at room temperature
with 2-methyl-2-butene as scavenger afforded juniperonic acid (1)
in 86% yield.
In conclusion, juniperonic acid was obtained from EPA in 19%
overall yield over eight steps.26 The particular advantage of our
method is the conservation of the all-Z-configuration of the meth-
ylene-interrupted double bonds. We believe this strategy com-
petes well with other procedures for synthesizing an assembly of
methylene-interrupted double bonds.
24. Viala, J.; Santelli, M. Synthesis 1988, 395–397.
25. Miyaoka, H.; Tamura, M.; Yamada, Y. Tetrahedron 2000, 56, 8083–8094.
26. Spectroscopic data of selected compounds: Juniperonic acid (1): 1H NMR
(300 MHz, CDCl3) d 11.55 (br s, 1H), 5.48–5.25 (m, 8H), 2.81 (t, J = 5.7 Hz,
4H), 2.36 (t, J = 7.5 Hz, 2H), 2.15–1.98 (m, 8H), 1.70 (p, J = 7.5 Hz, 2H), 1.45–1.30
(m, 4H), 0.98 (t, J = 7.5 Hz, 3H). 13C NMR (75 MHz, CDCl3) d 179.86 (CO2H),
132.11 (CH), 131.26 (CH), 130.29 (CH), 128.44 (2 Â CH), 128.38 (CH), 127.96
(CH), 127.26 (CH), 33.51 (CH2), 29.45 (CH2), 29.42 (CH2), 27.28 (2 Â CH2), 26.59
(CH2), 25.78 (CH2), 25.68 (CH2), 24.75 (CH2), 20.71 (CH2), 14.42 (CH3). MS (EI)
m/z: 304 (M+, 7), 121 (34), 108 (61), 95 (57), 79 (100) and 67 (84). HRMS (EI)
C20H32O2 requires 304.2402, found 304.2396. Compound 2:21 1H NMR (CDCl3,
300 MHz): d 9.75 (t, J = 1.8 Hz, 1H), 5.46–5.15 (m, 6H), 2.86–2.74 (m, 4H), 2.42
(td, J = 7.3 and 1.8 Hz, 2H), 2.20–1.92 (m, 4H), 1.65 (dt, J = 15.2 and 7.3 Hz, 2H),
1.52–1.28 (m, 2H) and 0.97 (t, J = 7.5 Hz, 3H). 13C NMR (CDCl3, 75 MHz): d
202.63 (CHO), 132.11 (CH), 129.54 (CH), 128.54 (CH), 128.48 (CH), 128.13 (CH),
127.15 (CH), 43.88 (CH2), 29.44 (CH2), 27.04 (CH2), 25.74 (CH2), 25.65 (CH2),
21.80 (CH2), 20.67 (CH2), 14.38 (CH3). MS (EI) m/z: 220 (M+, 9), 108 (39), 95
(63), 79 (100) and 67 (79). HRMS (EI) C15H24O requires 220.1827, found
220.1821. Compound 10: 1H NMR (300 MHz, CDCl3) d 5.46–5.20 (m, 8H), 4.85
(t, J = 4.7 Hz, 1H), 4.01–3.76 (m, 4H), 2.88–2.70 (m, 4H), 2.17–1.92 (m, 8H),
1.72–1.56 (m, 2H), 1.55–1.28 (m, 6H), 0.97 (t, J = 7.5 Hz, 3H). 13C NMR (75 MHz,
CDCl3) d 132.07 (CH), 130.37 (CH), 130.31 (CH), 129.43 (CH), 128.41 (CH),
128.37 (CH), 127.89 (CH), 127.24 (CH), 104.70 (CH), 64.97 (2ÂCH2), 33.59
(CH2), 29.48 (CH2), 29.41 (CH2), 27.26 (2ÂCH2), 27.17 (CH2), 25.76 (CH2), 25.66
(CH2), 24.23 (CH2), 20.68 (CH2), 14.41 (CH3). MS (EI) m/z: 332 (M+, 9), 108 (43),
99 (72), 79 (58) and 73 (100). HRMS (EI) C22H36O2 requires 332.2715, found
332.2709. Compound 11: 1H NMR (300 MHz, CDCl3) d 9.76 (t, J = 1.7 Hz, 1H),
5.57–5.15 (m, 8H), 2.90–2.68 (m, 4H), 2.43 (td, J = 7.3, 1.7 Hz, 2H), 2.16–1.94
(m, 8H), 1.69 (p, J = 7.4 Hz, 2H), 1.44–1.28 (m, 4H), 0.97 (t, J = 7.5 Hz, 3H). 13C
NMR (75 MHz, CDCl3) d 202.66 (CHO), 132.09 (CH), 131.26 (CH), 130.23 (CH),
128.50 (CH), 128.44 (CH), 128.34 (CH), 127.97 (CH), 127.23 (CH), 43.42 (CH2),
29.40 (CH2), 29.39 (CH2), 27.26 (CH2), 27.24 (CH2), 26.60 (CH2), 25.75 (CH2),
25.66 (CH2), 22.19 (CH2), 20.68 (CH2), 14.40 (CH3). MS (EI) m/z: 288 (M+, 5), 108
(61), 95 (63), 79 (100) and 67 (88). HRMS (EI) C20H32O requires 288.2453,
found 288.2446.
Acknowledgements
The Norwegian Research Council (KOSK II) is gratefully
acknowledged for a scholarship to A.V. We thank Pronova Biophar-
ma for a generous gift of the ethyl ester of EPA.
References and notes
1. Wolff, R. L.; Dareville, E.; Martin, J.-C. J. Am. Oil Chem. Soc. 1997, 74, 515–523.
2. Gellerman, J. L.; Schlenk, H. Experientia 1963, 19, 522–523.
3. Schlenk, H.; Gellerman, J. L. J. Am. Oil Chem. Soc. 1965, 42, 504–511.
4. Wolff, R. L.; Deluc, L. G.; Marpeau, A. M. J. Am. Oil Chem. Soc. 1996, 73, 765–771.
5. Takagi, T.; Itabashi, Y. Lipids 1982, 17, 716–723.
6. McGaw, L. J.; Jager, A. K.; van Staden, J. Fitoterapia 2002, 73, 431–433.
7. Smith, C. R., Jr.; Kleiman, R.; Wolff, I. A. Lipids 1968, 3, 37–42.
8. Kleiman, R.; Spencer, G. F.; Earle, F. R.; Wolff, I. A. Chem. Ind. 1967, 1326–1327.
9. Takagi, T.; Kaneniwa, M.; Itabashi, Y.; Ackman, R. G. Lipids 1986, 21, 558–565.
10. Sato, D.; Ando, Y.; Tsujimoto, R.; Kawasaki, K.-I. Lipids 2001, 36, 1371–1375.
11. Kawashima, H. Lipids 2005, 40, 627–630.
12. Nishiyama, N.; Chu, P. J.; Saito, H. Biol. Pharm. Bull. 1995, 18, 1513–1517.
13. Morishige, J.; Amano, N.; Hirano, K.; Nishio, H.; Tanaka, T.; Satouchi, K. Biol.
Pharm. Bull. 2008, 31, 1786–1789.
14. Ikeda, I.; Oka, T.; Koba, K.; Sugano, M.; Lie Ken Jie, M. S. F. Lipids 1992, 27, 500–
504.
15. Tanaka, T.; Morishige, J.; Iwawaki, D.; Fukuhara, T.; Hamamura, N.; Hirano, K.;
Osumi, T.; Satouchi, K. FEBS J. 2007, 274, 2728–2737.
16. Rakoff, H. Lipids 1993, 28, 47–50.
17. Holmeide, A. K.; Skattebøl, L.; Sydnes, M. J. Chem. Soc., Perkin Trans. 1 2001,
1942–1946.