1022
C. Santi, T. Wirth / Tetrahedron: Asymmetry 10 (1999) 1019–1023
In conclusion, we have prepared new chiral nitrogen-containing diselenides by using simple pro-
cedures. The selectivities in diethylzinc addition to benzaldehyde, catalyzed by these diselenides as
procatalysts, were investigated with respect to the steric and electronic features of these compounds.
The results should give useful information for the design of new catalysts for these kinds of reactions.
Acknowledgements
This work was supported by the Schweizer Nationalfonds and by the Treubel-Fonds (fellowship
for T.W.). We thank Professors B. Giese and M. Tiecco for their generous support. This research
was performed under MURST National Project ‘Stereoselezione in Sintesi Organica. Metodologie ed
Applicazioni’ (C.S.).
References
1. (a) Devant, R. M.; Radunz, H. E. In Houben-Weyl, Methoden der Organischen Chemie; Helmchen, G.; Hoffman, R.W.;
Mulzer, J.; Schaumann, E., Eds. Thieme: Stuttgart, 1995; Vol. E21b, pp. 1314–1334. (b) Soai, K.; Niwa, S. Chem. Rev.
1992, 92, 833–856.
2. (a) Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071–6072. (b) Noyori, R.; Kitamura,
M. Angew. Chem. 1991, 103, 34–55; Angew. Chem., Int. Ed. Engl. 1991, 30, 49–69. (c) Kitamura, M.; Suga, S.; Niwa,
M.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 4832–4842. (d) Bolm, C.; Schlingloff, G.; Harms, K. Chem. Ber. 1992, 125,
1191–1203.
3. (a) Fitzpatrick, K.; Hulst, R.; Kellog, R. M. Tetrahedron: Asymmetry 1995, 6, 1861–1864. (b) Gibson, C. L. J. Chem. Soc.,
Chem. Commun. 1996, 645–646. (c) Kellog, R. M.; Hof, R. P. J. Chem. Soc., Perkin Trans. 1 1996, 1651–1657. (d) Fulton,
D. A.; Gibson, C. L. Tetrahedron Lett. 1997, 38, 2019–2022. (e) Rijnberg, E.; Hovestad, N. J.; Kleij, A. W.; Jastrzebski, J.
T. B. H.; Boersma, J.; Janssen, M. D.; Spek, A. L.; van Koten, G. Organometallics 1997, 16, 2847–2857.
4. (a) Fukuzawa, S.; Tsudzuki, K. Tetrahedron: Asymmetry 1995, 6, 1039–1042. (b) Wirth, T. Tetrahedron Lett. 1995, 36,
7849–7852. (c) Wirth, T.; Kulicke, K. J.; Fragale, G. Helv. Chim. Acta 1996, 79, 1957–1966. (d) Wirth, T. Tetrahedron
1999, 55, 1–28.
5. Girard, C.; Kagan, H. B. Angew. Chem. 1998, 110, 3088–3127; Angew. Chem., Int. Ed. Engl. 1998, 37, 2922–2959.
6. Selected spectroscopic data of diselenide 2: 1H NMR: δ 7.93 (dd, 1H, J=1.1, 7.9 Hz), 7.28 (dd, 1H, J=1.1, 7.3 Hz), 7.03
(dd, 1H, J=7.3, 7.9 Hz), 3.66 (q, 1H, J=6.7 Hz), 2.30 (s, 6H), 1.53 (d, 3H, J=1.5 Hz), 0.35 (s, 9H). 13C NMR: δ 151.3,
138.3, 134.0, 133.4, 132.3, 127.8, 67.2, 43.6, 19.8, 2.4. 77Se NMR: δ 463.5 (broad 250 Hz). FAB-MS m/z (rel. int.) 601
(11), 300 (100), 254 (3), 149 (4), 73 (77), 44 (9).
7. Ito, Y.; Nakatsuka, M.; Saegusa, T. J. Am. Chem. Soc. 1982, 104, 7609–7622.
8. Selected spectroscopic data of diselenide 3: 1H NMR: δ 7.81 (dd, 1H, J=7.4, 1.3 Hz), 7.2–7.0 (m, 3H), 3.48 (t, 1H, J=7.5
Hz), 2.29 (s, 6H), 1.91 (quint, 2H, J=7.5 Hz), 0.84 (t, 3H, J=7.5 Hz). 13C NMR: δ 141.8, 133.5, 131.6, 127.7, 127.6, 125.7,
71.0, 42.1, 22.5, 11.4. 77Se NMR: δ 444.5. FAB-MS m/z (rel. int.) 485 (15), 242 (100), 197 (12), 86 (20), 69 (11), 57 (21),
44 (30).
9. Santi, C.; Fragale, G.; Wirth, T. Tetrahedron: Asymmetry 1998, 9, 3625–3628.