10.1002/adsc.202000789
Advanced Synthesis & Catalysis
o
80 C till completion. The reaction mixture was directly
Grabowski, R. D. Tillyer, F. Spindler, C. Malan, J. Am.
Chem. Soc. 2004, 126, 9918-9919; b) Y.-S. Chun, K. K.
Lee, Y. O. Ko, H. Shin, S.-G. Lee, Chem. Commun.
2008, 5098-5100; c) K.-I. Seki, K.-I. Nishijima, K.
Sanoki, Y. Kuge, M. Takahashi, H. Akizawa, N.
Tamaki, L. I. Wiebe, K. Ohkura, Heterocycles 2009, 77,
1307-1321; d) Y.-S. Chun, Y. O. Ko, H. Shin, S.-G.
Lee, Org. Lett. 2009, 11, 3414-3417; e) D. Deng, G.
Kang, B. Ji, H. Li, G. Qu, X. Fan, Aust. J. Chem. 2013,
66, 1342-1351; f) C. Solꢀ, E. Fernꢁndez, Angew. Chem.
Int. Ed. 2013, 52, 11351-11355; Angew. Chem. 2013,
125, 11561-11565; g) S. R. Pollack, J. T. Kuethe, Org.
Lett. 2016, 18, 6388-6391; h) Y. Liu, X. Lin, Adv.
Synth. Catal. 2019, 361, 876-918; i) J.-L. Pan, P.-P. Xie,
C. Chen, Y. Hao, C. Liu, H.-Y. Bai, J. Ding, L.-R.
Wang, Y.-Z. Xia, S.-Y. Zhang, Org. Lett. 2018, 20,
7131-7136; j) R. D. Kardile, R.-S. Liu, Org. Lett. 2019,
21, 6452-6456.
subjected to column chromatography using petroleum
ether/ethyl acetate (from 5:1-2:1) as the eluent to afford the
product 5a in 65% total yield. The NMR data was the same
as described above.
Acknowledgements
We are grateful to the National Natural Science Foundation of
China (No. 21801050), the Scientific Research Project of
Guangzhou Municipal Colleges and Universities (No.
201831816), the Start-up Grant from Guangzhou University (No.
2700050378) and the Natural Science Foundation of Shandong
Province (No. ZR2018BB026) for the financial support.
References
[1] a) Q. A. McKellar, E. W. Scott, J. vet. Pharmacol.
Therap. 1990, 13, 223-247; b) B. Narasimhan, D.
Sharma, P. Kumar, Med. Chem. Res. 2012, 21, 269-
283; c) G. Yadav, S. Ganguly, Eur. J. Med. Chem.
2015, 97, 419-443; d) R. S. Keri, A. Hiremathad, S.
Budagumpi, B. M. Nagaraja, Chem. Biol. Drug Des.
2015, 86, 799-845.
[5] a) B. Weiner, W. Szymanski, D. B. Janssen, A. J.
Minnaarda, B. L. Feringa, Chem. Soc. Rev. 2010, 39,
1656-1691; b) N. Saito, I. Abdullah, K. Hayashi, K.
Hamada, M. Koyama, Y. Sato, Org. Biomol. Chem.
2016, 14, 10080-10089.
[6] a) D. A. Horton, G. T. Bourne, M. L. Smythe, Chem.
Rev. 2003, 103, 893-930; b) W. R. J. D. Galloway, A.
Bender, M. Welchc, D. R. Spring, Chem. Commun.
2009, 2446-2462; c) S. Petit, C. Fruit, L. Bischoff, Org.
Lett. 2010, 12, 4928-4931.
[2] a) N. O. Anastassova, A. T. Mavrova, D. Y. Yancheva,
M. S. Kondeva-Burdina, V. I. Tzankova, S. S.
Stoyanov, B. L. Shivachev, R. P. Nikolova, Arabian. J.
Chem. 2018, 11, 353-369; b) X.-Y. Mao, X.-T. Lin, M.
Yang, G.-S. Chen, Y.-L. Liu, Adv. Syn. Catal. 2018,
360, 3643-3648; c) S. Braun, A. Botzki, S. Salmen, C.
Textor, G. Bernhardt, S. Dove, A. Buschauer, Eur. J.
Med. Chem. 2011, 46, 4419-4429; d) A. T. Mavrova, D.
Vuchev, K. Anichina, N. Vassilev, Eur. J. Med. Chem.
2010, 45, 5856-5861; e) S.-P. Wei, W.-J. Wu, Z.-Q. Ji,
Int. J. Mol. Sci. 2012, 13, 4819-4830; f) G. S. Yellol,
C.-T. Chou, W.-J. Chang, B. Maiti, C.-M. Sun, Adv.
Synth. Catal. 2012, 354, 187-196; g) W. S. Hamama, J.
Chem. Research (S), 2000, 269-271; h) E. L. Brian, J.
Org. Chem. 2007, 72, 630-632; i) J. Luo, Y.-B. Fang,
X.-Y. Mao, M. Yang, Y.-L. Zhao, Y.-L. Liu, G.-S
Chen, Y.-F. Ji, Adv. Syn. Catal. 2019, 361, 1408-1413;
j) X. Liu, M. Liu, W. Xu, M.-T. Zeng, H. Zhu, C.-Z.
Chang, Z.-B. Dong, Green Chem, 2017, 19, 5591-5598;
k) D. Du, K.-W. Sun, S.-Y. Jin, J.-D. Zhu, X.-M.
Zhang, M.-Y. Gao, W.-Q. Zhang, T. Lu, Adv. Synth.
Catal. 2018, 360, 4515-4522.
[7] a) H. M. L. Davies, D. Morton, Chem. Soc. Rev. 2011,
40, 1857-1869; b) R. A. Moss, M. P. Doyle,
Contemporary Carbene Chemistry; John Wiley & Sons,
Inc.: Hoboken, NJ, 2013; c) X.-F. Xu, M. P. Doyle, Acc.
Chem. Res. 2014, 47, 1396-1405; d) M. Marinozzi, F.
Pertusati, M. Serpi, Chem. Rev. 2016, 116, 13991-
14055.
[8] a) H. M. L. Davies, Y. Lian, Acc. Chem. Res. 2012, 45,
923-935; b) S.-F. Zhu, Q.-L. Zhou, Acc. Chem. Res.
2012, 45, 1365-1377; c) Q. Xiao, Y. Zhang, J.-B. Wang,
Acc. Chem. Res. 2013, 46, 236-247; d) A. Ford, H.
Miel, A. Ring, C. N. Slattery, A. R. Maguire, M. A.
McKervey, Chem. Rev. 2015, 115, 9981-10080; e) Y.
Xia, D. Qiu, J.-B. Wang, Chem. Rev. 2017, 117, 13810-
13889.
[9] a) H. Lebel, J. F. Marcoux, C. Molinaro, A. B. Charette,
Chem. Rev. 2003, 103, 977-1050; b) G. Maas, Chem.
Soc. Rev. 2004, 33, 183-190; c) H. Pellissier,
Tetrahedron 2008, 64, 7041-7095; d) M. P. Doyle,
Angew. Chem. Int. Ed. 2009, 48, 850-852; Angew.
Chem. 2009, 121, 864-866.
[3] For a review, see: a) G. Parkin, New. J. Chem. 2007,
31, 1996-2014; For selected examples, see: b) R.
Garcia, A. Paulo, Â. Domingos, I. Santos, Dalton
Trans. 2003, 2757-2760; c) A. F. Hill, H. Neumann, J.
Wagler, Organometallics 2010, 29, 1026-1031; d) E.
Alvarado, A. C. Badaj, T. G. Larocque, G. G. Lavoie,
Chem. Eur. J. 2012,18, 12112-12121; f) D. Deng, H.
Guo, B. Ji, W. Wang, L. Ma, F. Luo, New J. Chem.
2017, 41, 12611-12616; h) Y. Zhao, X. Liu, L. Zheng,
Y. Du, X. Shi, Y. Liu, Z. Yan, J. You, Y. Jiang, J. Org.
Chem. 2020, 85, 912-923; i) M. Banerjee, R. Karri, A.
Chalana, R. Das, R. K. Rai, K. S. Rawat, B. Pathak, G.
Roy, Chem. Eur. J. 2017, 23, 5696-5707.
[10] a) D. M. Hodgson, F. Y. T. M. Pierard, P. A. Stupple,
Chem. Soc. Rev. 2001, 30, 50-61; b) A. Padwa, Chem.
Soc. Rev. 2009, 38, 3072-3081; c) X. Guo, W.-H. Hu,
Acc. Chem. Res. 2013, 46, 2427-2440.
[11] a) H. Meier, K.P. Zeller, Angew. Chem. Int. Ed. 1975,
14, 32-43; Angew. Chem. 1975, 87, 52-63; b) W.
Kirmse, Eur. J. Org. Chem. 2002, 2193-2256. c) N. R.
Candeias, A. F. Trindade, P. M. P. Gois, C. A. M.
Afonso, Comprehensive Organic Synthesis II 2014, 3,
944-991.
[4] a) Y. Hsiao, N. R. Rivera, T. Rosner, S. W. Krska, E.
Njolito, F. Wang, Y.-K. Sun, J. D. Armstrong, E. J. J.
7
This article is protected by copyright. All rights reserved.