Y.-C. Joo et al. / Biochimie 94 (2012) 907e915
915
[10] L.E. Bevers, M.W. Pinkse, P.D. Verhaert, W.R. Hagen, Oleate hydratase cata-
lyzes the hydration of a nonactivated carbon-carbon bond, J. Bacteriol. 191
(2009) 5010e5012.
1 mM FAD (Supplementary Fig. 7B). The production of 10-
hydroxystearic acid from oleic acid by the enzyme in the absence
of FAD was 7-fold lower than that in the presence of 1 mM FAD.
Thus, FAD in the oleate hydratase does not seem to be involved in
the hydration reaction itself but rather in the structural stabiliza-
tion of the protein.
In the present study, the putative fatty acid hydratase from
M. caseolyticus was identified as an oleate hydratase by character-
izing the quantitative biochemical properties of the enzyme. The
enzyme exhibited hydration activity only for cis-9- and/or cis-12-
double bond unsaturated fatty acids without trans-configurations,
irreversibly producing 10-hydroxy fatty acids and 10,13-dihydroxy
fatty acids. The oleate hydratase was FAD-dependent, and G29,
G31, and E56 were essential for FAD-binding.
[11] T.C. Chen, Y.H. Ju, An improved factional crystallization method for the
enrichment of
g-linolenic acid in borage oil fatty acid, Ind. Eng. Chem. Res. 40
(2001) 3781e3784.
[12] A. Hamahata, Y. Takata, T. Gomi, M. Fujioka, Probing the S-adenosylmethio-
nine-binding site of rat guanidinoacetate methyltransferase. Effect of site-
directed mutagenesis of residues that are conserved across mammalian
non-nucleic acid methyltransferases, Biochem. J. 317 (1) (1996) 141e145.
[13] J.A. Hudson, C.A. MacKenzie, K.N. Joblin, Conversion of oleic acid to 10-
hydroxystearic acid by two species of ruminal bacteria, Appl. Microbiol. Bio-
technol. 44 (1995) 1e6.
[14] K.S. Kil, M.W. Cunningham, L.A. Barnett, Cloning and sequence analysis of
a gene encoding a 67-kilodalton myosin-cross-reactive antigen of Strepto-
coccus pyogenes reveals its similarity with class II major histocompatibility
antigens, Infect. Immun. 62 (1994) 2440e2449.
[15] A. Liavonchanka, E. Hornung, I. Feussner, M.G. Rudolph, Structure and
mechanism of the Propionibacterium acnes polyunsaturated fatty acid isom-
erase, Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 2576e2581.
Acknowledgment
[16] E.F. O’Shea, P.D. Cotter, C. Stanton, R.P. Ross, C. Hill, Production of bioactive
substances by intestinal bacteria as a basis for explaining probiotic mecha-
nisms: Bacteriocins and conjugated linoleic acid, Int. J. Food Microbiol. (2011).
doi:10.1016/j.ijfoodmicro.2011.1005.1025.
[17] S.J. O’Flaherty, T.R. Klaenhammer, Functional and phenotypic characterization
of a protein from Lactobacillus acidophilus involved in cell morphology, stress
tolerance and adherence to intestinal cells, Microbiology 156 (2010)
3360e3367.
This study was supported by a grant (Code# 000407980110)
from the Small and Medium Business Administration, Republic of
Korea.
[18] H. Galbraith, T.B. Miller, A.M. Paton, J.K. Thompson, Antibacterial activity of
long chain fatty acids and the reversal with calcium, magnesium, ergo-
calciferol and cholesterol, J. Appl. Bacteriol. 34 (1971) 803e813.
[19] C. Henderson, The effects of fatty acids on pure cultures of rumen bacteria,
J. Agric. Sci. 81 (1973) 107e112.
Appendix. Supplementary material
Supplementary material associated with this article can be
[20] H. Keweloh, H.J. Heipieper, Trans unsaturated fatty acids in bacteria, Lipids 31
(1996) 129e137.
[21] C.J. Zheng, J.S. Yoo, T.G. Lee, H.Y. Cho, Y.H. Kim, W.G. Kim, Fatty acid synthesis
is a target for antibacterial activity of unsaturated fatty acids, FEBS Lett. 579
(2005) 5157e5162.
References
[22] M. Dietrich, S. Eiben, C. Asta, T.A. Do, J. Pleiss, V.B. Urlacher, Cloning,
expression and characterisation of CYP102A7, a self-sufficient P450 mono-
oxygenase from Bacillus licheniformis, Appl. Microbiol. Biotechnol. 79 (2008)
931e940.
[1] D.G. Hayes, The catalytic activity of lipases toward hydroxy fatty acidsda
review, J. Am. Oil Chem. Soc. 73 (1996) 543e549.
[2] A.D. Ibrahim, H. Hussaini, A. Sani, A.A. Aliero, S.E. Yakubu, Volatile metabolites
profiling to discriminate diseases of tomato fruits inoculated with three
toxigenic fungal pathogens, Res. Biotechnol. 2 (2011) 14e22.
[23] C.T. Hou, Is strain DS5 hydratase a C-10 positional specific enzyme? Identi-
fication of bioconversion products from
a- and g-linolenic acids by Flavi-
bacterium sp. DS5, J. Ind. Microbiol. 14 (1995) 31e34.
[3] Y. Suzuki, O. Kurita, Y. Kono, H. Hyakutake, A. Sakurai, Structure of a new
antifungal C11-hydroxyfatty acid isolated from leaves of wild rice, Biosci.
Biotechnol. Biochem. 59 (1995) 2049e2051.
[4] B.L. Hilker, H. Fukushige, C. Hou, D. Hildebrand, Comparison of Bacillus
monooxygenase genes for unique fatty acid production, Prog. Lipid Res. 47
(2008) 1e14.
[5] W.H. Eschenfeldt, Y. Zhang, H. Samaha, L. Stols, L.D. Eirich, C.R. Wilson,
M.I. Donnelly, Transformation of fatty acids catalyzed by cytochrome P450
monooxygenase enzymes of Candida tropicalis, Appl. Environ. Microbiol. 69
(2003) 5992e5999.
[6] F.J. van de Loo, P. Broun, S. Turner, C. Somerville, An oleate 12-hydroxylase
from Ricinus communis L. is a fatty acyl desaturase homolog, Proc. Natl.
Acad. Sci. U.S.A. 92 (1995) 6743e6747.
[7] M. Busquets, V. Deroncele, J. Vidal-Mas, E. Rodriguez, A. Guerrero, A. Manresa,
Isolation and characterization of a lipoxygenase from Pseudomonas 42A2
responsible for the biotransformation of oleic acid into (S)-(E)-10-hydroxy-8-
octadecenoic acid, Anton. Leeuw. Int. J. G. 85 (2004) 129e139.
[8] A. Volkov, A. Liavonchanka, O. Kamneva, T. Fiedler, C. Goebel, B. Kreikemeyer,
I. Feussner, Myosin cross-reactive antigen of Streptococcus pyogenes M49
encodes a fatty acid double bond hydratase that plays a role in oleic acid
detoxification and bacterial virulence, J. Biol. Chem. 285 (2010) 10353e10361.
[9] E. Rosberg-Cody, A. Liavonchanka, C. Gobel, R.P. Ross, O. O’Sullivan,
G.F. Fitzgerald, I. Feussner, C. Stanton, Myosin-cross-reactive antigen (MCRA)
protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase
which has a function in stress protection, BMC Biochem. 12 (2011) 9e20.
[24] C.T. Hou, Production of hydroxy fatty acids from unsaturated fatty acids by
Flavobacterium sp. DS5 hydratase, a C-10 positional- and cis unsaturation-
specific enzyme, J. Am. Oil Chem. Soc. 72 (1995) 1265e1270.
[25] I.S. Yu, S.J. Yeom, H.J. Kim, J.K. Lee, Y.H. Kim, D.K. Oh, Substrate specificity of
Stenotrophomonas nitritireducens in the hydroxylation of unsaturated fatty
acid, Appl. Microbiol. Biotechnol. 78 (2008) 157e163.
[26] W.G. Niehaus Jr., G.J. Schroepfer Jr., The reversible hydration of oleic acid to
10D-hydroxystearic acid, Biochem. Biophys. Res. Commun. 21 (1965)
271e275.
[27] S. Koritala, C.T. Hou, C.W. Hesseltine, M.O. Bagby, Microbial conversion of oleic
acid to 10-hydroxystearic acid, Appl. Microbiol. Biotechnol. 32 (1989)
299e304.
[28] G.J. Schroepfer Jr., Stereospecific conversion of oleic acid to 10-hydroxystearic
acid, J. Biol. Chem. 241 (1966) 5441e5447.
[29] Y. Nishiya, T. Imanaka, Analysis of interaction between the Arthrobacter sar-
cosine oxidase and the coenzyme flavin adenine dinucleotide by site-directed
mutagenesis, Appl. Environ. Microbiol. 62 (1996) 2405e2410.
[30] O. Dym, D. Eisenberg, Sequence-structure analysis of FAD-containing proteins,
Protein Sci. 10 (2001) 1712e1728.
[31] R.K. Wierenga, J. Drenth, G.E. Schulz, Comparison of the three-dimensional
protein and nucleotide structure of the FAD-binding domain of p-hydrox-
ybenzoate hydroxylase with the FAD- as well as NADPH-binding domains of
glutathione reductase, J. Mol. Biol. 167 (1983) 725e739.