4722
J. Am. Chem. Soc. 1999, 121, 4722-4723
Scheme 1
Transition-State Stabilization by a Mammalian
Reductive Dehalogenase
Munetaka Kunishima,† Jessica E. Friedman, and
Steven E. Rokita*
Department of Chemistry and Biochemistry
UniVersity of Maryland College Park, Maryland 20742
Scheme 2
ReceiVed March 3, 1999
Enzyme-catalyzed dehalogenation is typically associated with
xenobiotic metabolism and in particular with microorganisms that
detoxify environmental pollutants.1,2 Both aliphatic and aromatic
substrates are susceptible to dehalogenation through mechanisms
that include oxidation, reduction, and hydrolysis. Oxidative
processes are usually associated with aerobic organisms, whereas
reductive processes are usually associated with anaerobic organ-
isms. Remarkably, mammals have the additional ability to
promote reductive deiodination of the hormone thyroxine (3-[4-
(4-hydroxy-3,5-diiodophenoxy)-3,5-diiodophenylalanine), its me-
tabolites, and related intermediates including iodotyrosine. A series
of selenoenzymes found in tissues such as brown fat, liver, kidney,
and the central nervous system are responsible for the reduction
and deiodination of thyroxine and the concomitant oxidation of
glutathione.3 In contrast, an iodide salvage enzyme in the thyroid
mediates reduction and deiodination of iodo- and diiodotyrosine
with consumption of NADPH (Scheme 1).4 Little mechanistic
data has yet to be gathered on these mammalian reactions, and
we now report compelling evidence for a key intermediate
proposed in catalysis of iodotyrosine deiodinase.
Both direct aromatic substitution and halophilic reaction of a
nonaromatic tautomer (see below) can be considered for this
reductive process. However, aromatic substitution via nucleophilic
addition and formation of an anionic Meisenheimer intermediate
(SNAR) is disfavored for electron-rich targets. The weak C-I bond
might instead suggest a related homolytic process (SRN1), and
yet model conditions necessary for such a dehalogenation remain
far from physiological.5 Preliminary studies have also suggested
that diiodotyrosine is stable to one-electron reductants including
sulfite, metabisulfite, ferrocyanide, and dithionite.4a Electron-rich
aryl halides are most commonly dehalogenated via Lewis acid-
catalyzed two-electron processes.6 Tautomerization (or possibly
protonation) to form the nonaromatic intermediate illustrated in
Scheme 2 facilitates halophilic attack and cleavage of the C-I
bond. This type of process has been proposed for triphenylphos-
phine-dependent debromination of o-bromophenol and bromo-
aniline,7 AlCl3- and GaCl3-catalyzed deiodination of diiodocresol,8
hydriodic acid-dependent deiodination of aryl iodides,9 and most
recently, biomimetic coupling of two diiodotyrosines.10 Similar
mechanisms have been proposed for the biological deiodination
of thyroxine by a selenocysteinyl residue11 and dechlorination of
tetrachlorohydroquinone by a cysteinyl residue or glutathione.12
The active site of iodotyrosine deiodinase has not yet been
characterized but may also include a cysteinyl residue.13 The
ability of this enzyme to stabilize the proposed16 nonaromatic
tautomer is described below by the binding affinity of pyridonyl-
containing mimics of this intermediate.
The initial targets, D,L-3-(2-pyridon-5-yl)alanine 1 and D,L-3-
(N-methyl-2-pyridon-5-yl)alanine 2, were constructed using a
standard condensation with diketopiperazine (Scheme 3).17 The
necessary aldehyde was prepared by sequential bromination,
lithiation, and finally formylation of 2-methoxypyridine (see
Supporting information for experimental details).18 The intermedi-
ate diketopiperazine was reduced and hydrolyzed by HI and
(7) Hoffmann, H.; Michael, D. Chem. Ber. 1962, 95, 528-535
(8) Tashiro, M.; Makishima. T.; Horie, S. J. Chem. Res. 1987, 342-343.
(9) (a) Gold, V.; Whittaker, M. J. Chem. Soc. 1951, 1184-1190. (b)
Choguill, H.; Ridd, J. J. Chem. Soc. 1961, 822-826. (c) Norman, R. O. C.;
Taylor, R. Electrophilic Substitution in Benzenoid Compounds; Elsevier: New
York, 1965; pp 247-249.
(10) Bell, N. V.; Bowman, W. R.; Coe, P. F.; Turner, A. T.; Whybrow, D.
Tetrahedron Lett. 1997, 38, 2581-2584.
(11) Berry, M. J.; Kieffer, J. D.; Harney, J. W.; Larsen, P. R. J. Biol. Chem.
1991, 266, 14155-14158. (b) Sun, B. C.; Harney, J. W.; Berry, M. J.; Larsen,
P. R. Endocrinology 1997, 138, 5452-5458. (c) Vasil’ev, A. A.; Engman, L.
J. Org. Chem. 1998, 63, 3911-3917.
(12) (a) Willett, W. S.; Copley, S. D. Chem. Biol. 1996, 3, 851-857. (b)
McCarthy, D. L.; Navarrete, S.; Willett, W. S.; Babbitt, P. C.; Copley, S. D.
Biochemistry 1996, 35, 14634-14642. (c) McCarthy, M. L.; Louie, D. F.;
Copley, S. D. J. Am. Chem. Soc. 1997, 119, 11337-11338.
(13) Thiols exhibit a unique affinity for aryl and aliphatic iodo substitu-
ents.14,15 For example, chloro- and bromomethyl ketones react with thiols to
generate a mixture of substitution and reduction products, whereas iodomethyl
ketones react under equivalent conditions to generate the reduced methyl ketone
exclusively.15
(14) (a) Montanari, S.; Paradisi, C.; Scorrano, G. J. Org. Chem. 1993, 58,
5628-5631. (b) Patai, S., Ed. The Chemistry of the Carbon-Halogen Bond;
Wiley: New York, 1973; Vols. 1 and 2.
(15) Seshadri, R.; Pegg, W. J.; Israel, M. J. Org. Chem. 1981, 46, 2596-
2598.
(16) Hartmann, K.; Hartmann, N. Z. Chem. 1971, 11, 344-345.
(17) Niemann, C.; Lewis, R. N.; Hays, J. T. J. Am. Chem. Soc. 1942, 64,
1678-1682.
(18) (a) Spinner, E.; White, J. C. B. J. Chem. Soc. (B) 1966, 991-995. (b)
Bargar, T. M.; Wilson, T.; Daniel, J. K. J. Heterocycl. Chem. 1985, 22, 1583-
1592. (c) Comins, D. L.; Killpack, M. O. J. Org. Chem. 1990, 55, 5, 69-73.
† Permanent address: Faculty of Pharmaceutical Sciences, Kobe Gakuin
University, Nishi-ku, Kobe 651-2180, Japan.
(1) (a) Kirk, K. L. Biochemistry of the Halogenated Organic Compounds;
Plenum Press: New York, 1991. (b) Fetzner, S.; Lingens, F. Microbiol. ReV.
1994, 641-685. (c) Copley, S. D. Chem. Biol. 1997, 4, 169-174.
(2) (a) Abramowicz, D. A. Crit. ReV. Biotechnol. 1990, 10, 214-251. (b)
Wackett, L. P.; Schanke, C. A. In Metals in Biological Systems; Sigel, H.,
Sigel, A., Eds.; Marcel Dekker: New York, 1992; Vol. 28, pp 329-356. (c)
Neumann, A.; Wohlfarth, F.; Diekert, G. J. Biol. Chem. 1996, 271, 16515-
16519. (d) Romanov, V.; Hausinger, R. P. J. Bacteriol. 1996, 178, 2656-
2661. (e) Maymo´-Gatell, X.; Chien, Y.-T.; Gossett, J. M.; Zinder, S. H. Science
1997, 276, 1568-1571. (f) Quense, J. F.; Mueller, S. A.; Jain, M. K.; Tiedje,
J. M. Science 1998, 280, 722-724.
(3) (a) Berry, M. J.; Banu, L.; Larsen, P. R. Nature 1991, 349, 438-440.
(b) Larsen, P. R. Biochem. Soc. Trans. 1997, 25, 588-592.
(4) (a) Goswami, A.; Rosenberg, I. N. Endocrinology 1977, 101, 331-
341. (b) Rosenberg, I. N.; Goswami, A. J. Biol. Chem. 1979, 254, 12318-
12325. (c) Goswami, A.; Rosenberg, I. N. J. Biol. Chem. 1979, 254, 12326-
12330.
(5) (a) Alam, N.; Amotore, C.; Combellas, C.; Pinson, J.; Save´ant, J.-M.;
Thie´bault, A.; Verpeaux, J.-N. J. Org. Chem. 1988, 53, 1496-1504. (b)
Moreno, M.; Gallardo, I.; Bertra´n, J. J. Chem. Soc., Perkin Trans. 2 1989,
2017-2021. (c) Bunnett, J. F. Acc. Chem. Res. 1992, 25, 2-9. (d) Das, T. N.
J. Phys. Chem. 1998, 102, 426-433.
(6) (a) de la Mare, P. B. D.; Swedlund, B. E. in Chemistry of the Carbon-
Halogen Bond; Patai, S., Ed.; Wiley: New York, 1973; Chapter 7, pp 407-
548. (b) Zefirov, N. S.; Mahkon’kov, D. I. Chem. ReV. 1982, 82, 615-624.
10.1021/ja990693n CCC: $18.00 © 1999 American Chemical Society
Published on Web 04/29/1999