Journal of the American Chemical Society
Communication
Nokami, T.; Yoshida, J.-i. Halogen and Chalcogen Cation Pools
Stabilized by DMSO. Versatile Reagents for Alkene Difunctionaliza-
tion. J. Am. Chem. Soc. 2013, 135, 16070−16073. (c) Xu, H.-C.;
Campbell, J. M.; Moeller, K. D. Cyclization Reactions of Anode-
Generated Amidyl Radicals. J. Org. Chem. 2014, 79, 379−391.
(d) Chen, J.; Yan, W.-Q.; Lam, C. M.; Zeng, C.-C.; Hu, L.-M.; Little,
R. R. Electrocatalytic Aziridination of Alkenes Mediated by n-Bu4NI: A
Radical Pathway. Org. Lett. 2015, 17, 986−989. (e) Yuan, Y.; Cao, Y.;
Lin, Y.; Li, Y.; Huang, Z.; Lei, A. Electrochemical Oxidative
Alkoxysulfonylation of Alkenes Using Sulfonyl Hydrazines and
Alcohols with Hydrogen Evolution. ACS Catal. 2018, 8, 10871−
10875. (f) Xiong, P.; Long, H.; Song, J.; Wang, Y.; Li, J.-F.; Xu, H.-C.
Electrochemically Enabled Carbohydroxylation of Alkenes with H2O
and Organotrifluoroborates. J. Am. Chem. Soc. 2018, 140, 16387−
16391. (g) Li, J.; Huang, W.; Chen, J.; He, L.; Cheng, X.; Li, G.
Electrochemical Aziridination by Alkene Activation Using a Sulfamate
as the Nitrogen Source. Angew. Chem., Int. Ed. 2018, 57, 5695−5698.
(5) For representative recent reviews, see: (a) Wiebe, A.; Gieshoff, T.;
Mohle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S. R. Electrifying
Organic Synthesis. Angew. Chem., Int. Ed. 2018, 57, 5594−5619.
(b) Tang, S.; Liu, Y.; Lei, A. Electrochemical Oxidative Cross-coupling
with Hydrogen Evolution: A Green and Sustainable Way for Bond
Formation. Chem. 2018, 4, 27−45. (c) Yan, M.; Kawamata, Y.; Baran, P.
S. Synthetic Organic Electrochemical Methods Since 2000: On the
Verge of a Renaissance. Chem. Rev. 2017, 117, 13230−13319. (d) Feng,
R.; Smith, J. A.; Moeller, K. D. Anodic Cyclization Reactions and the
Mechanistic Strategies That Enable Optimization. Acc. Chem. Res.
2017, 50, 2346−2352.
(6) (a) Torii, S.; Liu, P.; Bhuvaneswari, N.; Amatore, C.; Jutand, A.
Chemical and Electrochemical Asymmetric Dihydroxylation of Olefins
in I2−K2CO3−K2OsO2(OH)4 and I2−K3PO4/K2HPO4−
K2OsO2(OH)4 Systems with Sharpless’ Ligand. J. Org. Chem. 1996,
61, 3055−3060. (b) Nguyen, B. H.; Redden, A.; Moeller, K. D.
Sunlight, electrochemistry, and sustainable oxidation reactions. Green
Chem. 2014, 16, 69−72. (c) Tanaka, H.; Kuroboshi, M.; Takeda, H.;
Kanda, H.; Torii, S. Electrochemical asymmetric epoxidation of olefins
by using an optically active Mn−salen complex. J. Electroanal. Chem.
2001, 507, 75−81.
(7) (a) Ye, K.-Y.; Pombar, G.; Fu, N.; Sauer, G. S.; Keresztes, I.; Lin, S.
Anodically Coupled Electrolysis for the Heterodifunctionalization of
Alkenes. J. Am. Chem. Soc. 2018, 140, 2438−2441. (b) Ye, K.-Y.; Song,
Z.; Sauer, G. S.; Harenberg, J. H.; Fu, N.; Lin, S. Synthesis of
Chlorotrifluoromethylated Pyrrolidines by Electrocatalytic Radical
Ene-Yne Cyclization. Chem. - Eur. J. 2018, 24, 12274−12279.
(8) Fu, N.; Shen, Y.; Allen, A. R.; Song, L.; Ozaki, A.; Lin, S. Mn-
Catalyzed Electrochemical Chloroalkylation of Alkenes. ACS Catal.
2019, 9, 746−754.
(9) For representative reviews on chiral phosphine/phosphine oxide
in catalysis, see: (a) Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O.
Phosphine Organocatalysis. Chem. Rev. 2018, 118, 10049−10293.
(b) Hayashi, T. Chiral Monodentate Phosphine Ligand MOP for
Transition-Metal-Catalyzed Asymmetric Reactions. Acc. Chem. Res.
2000, 33, 354−362.
(10) For a racemic example of alkene cyanophosphinoylation, see:
Zhang, P.-Z.; Zhang, L.; Li, J.-A.; Shoberu, A.; Zou, J.-P.; Zhang, W.
Phosphinoyl Radical Initiated Vicinal Cyanophosphinoylation of
Alkenes. Org. Lett. 2017, 19, 5537−5540.
(11) Secondary phosphine oxides are commercially available or
readily prepared from diethyl phosphite: (a) Hays, H. R. Reaction of
diethyl phosphonate with methyl and ethyl Grignard reagents. J. Org.
Chem. 1968, 33, 3690−3694. For examples of phosphinoyl radical
addition to alkenes, see: (b) Wei, W.; Ji, J.-X. Catalytic and Direct
Oxyphosphorylation of Alkenes with Dioxygen and H-Phosphonates
Leading to β-Ketophosphonates. Angew. Chem., Int. Ed. 2011, 50,
9097−9099. (c) Zhang, C.; Li, Z.; Zhu, L.; Yu, L.; Wang, Z.; Li, C.
Silver-Catalyzed Radical Phosphonofluorination of Unactivated
Alkenes. J. Am. Chem. Soc. 2013, 135, 14082−14085. (d) Li, J.-A.;
Zhang, P.-Z.; Liu, K.; Shoberu, A.; Zou, J.-P.; Zhang, W. Phosphinoyl
Radical-Initiated α,β-Aminophosphinoylation of Alkenes. Org. Lett.
Author Contributions
†N.F. and L.S. contributed equally to the work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by Cornell University and
NIGMS (R01GM130928). This study made use of the NMR
facility supported by the NSF (CHE-1531632). We thank IKA
for the donation of ElectraSyn 2.0 and Dr. Scott McCann and
Gregory Sauer for constructive discussion.
REFERENCES
■
(1) For representative reviews, see: (a) Chemler, S. R.; Fuller, P. H.
Heterocycle Synthesis by Copper Facilitated Addition of Heteroatoms
to Alkenes, Alkynes and Arenes. Chem. Soc. Rev. 2007, 36, 1153−1160.
(b) McDonald, R. I.; Liu, G.; Stahl, S. S. Palladium(II)-Catalyzed
Alkene Functionalization via Nucleopalladation: Stereochemical Path-
ways and Enantioselective Catalytic Applications. Chem. Rev. 2011,
111, 2981−3019. (c) Courant, T.; Masson, G. Recent Progress in
Visible-Light Photoredox-Catalyzed Intermolecular 1,2-Difunctionali-
zation of Double Bonds via an ATRA-Type Mechanism. J. Org. Chem.
̈
̃
2016, 81, 6945−6952. (d) Romero, R. M.; Woste, T. H.; Muniz, K.
Vicinal Difunctionalization of Alkenes with Iodine(III) Reagents and
Catalysts. Chem. - Asian J. 2014, 9, 972−983. (e) Williamson, K. S.;
Michaelis, D. J.; Yoon, T. P. Advances in the Chemistry of Oxaziridines.
Chem. Rev. 2014, 114, 8016−8036. (f) Derosa, J.; Tran, V. T.; van der
Puyl, V. A.; Engle, K. M. Carbon−Carbon π-Bonds as Conjunctive
Reagents in Cross-Coupling. Aldrichimica Acta 2018, 51, 21−32.
(2) For representative recent examples, see: (a) Liu, Z.; Li, X.; Zeng,
T.; Engle, K. M. Directed, Palladium(II)-Catalyzed Enantioselective
anti-Carboboration of Alkenyl Carbonyl Compounds. ACS Catal.
2019, 9, 3260−3265. (b) Wang, H.; Bai, Z.; Jiao, T.; Deng, Z.; Tong,
H.; He, G.; Peng, Q.; Chen, G. Palladium-Catalyzed Amide-Directed
Enantioselective Hydrocarbofunctionalization of Unactivated Alkenes
Using a Chiral Monodentate Oxazoline Ligand. J. Am. Chem. Soc. 2018,
140, 3542−3546. (c) Anthony, D.; Lin, Q.; Baudet, J.; Diao, T. Nickel-
Catalyzed Asymmetric Reductive Diarylation of Vinylarenes. Angew.
Chem., Int. Ed. 2019, 58, 3198−3202. (d) Bovino, M. T.; Chemler, S. R.
Catalytic Enantioselective Alkene Aminohalogenation/Cyclization
Involving Atom Transfer. Angew. Chem., Int. Ed. 2012, 51, 3923−
3927. (e) Fang, L.; Yan, L.; Haeffner, F.; Morken, J. P. Carbohydrate-
Catalyzed Enantioselective Alkene Diboration: Enhanced Reactivity of
1,2-Bonded Diboron Complexes. J. Am. Chem. Soc. 2016, 138, 2508−
2511. (f) You, W.; Brown, M. K. Catalytic Enantioselective Diarylation
of Alkenes. J. Am. Chem. Soc. 2015, 137, 14578−14581. (g) Chen, B.;
Fang, C.; Liu, P.; Ready, J. M. Rhodium-Catalyzed Enantioselective
Radical Addition of CX4 Reagents to Olefins. Angew. Chem., Int. Ed.
2017, 56, 8780−8784.
(3) For a perspective, see: (a) Sauer, G. S.; Lin, S. An Electrocatalytic
Approach to the Radical Difunctionalization of Alkenes. ACS Catal.
2018, 8, 5175−5187. For examples, see: (b) Siu, J. C.; Parry, J. B.; Lin,
S. Aminoxyl-Catalyzed Electrochemical Diazidation of Alkenes
Mediated by a Metastable Charge-Transfer Complex. J. Am. Chem.
Soc. 2019, 141, 2825−2831. (c) Siu, J. C.; Sauer, G. S.; Saha, A.; Macey,
R. L.; Fu, N.; Chauvire, T.; Lancaster, K. L.; Lin, S. Electrochemical
Azidooxygenation of Alkenes Mediated by a TEMPO−N3 Charge-
Transfer Complex. J. Am. Chem. Soc. 2018, 140, 12511−12520. (d) Fu,
N.; Sauer, G. S.; Lin, S. Electrocatalytic Radical Dichlorination of
Alkenes with Nucleophilic Chlorine Sources. J. Am. Chem. Soc. 2017,
139, 15548−15553. (e) Fu, N.; Sauer, G. S.; Saha, A.; Loo, A.; Lin, S.
Metal-Catalyzed Electrochemical Diazidation of Alkenes. Science 2017,
357, 575−579.
(4) For a review, see: (a) Martins, G. M.; Shirinfar, B.; Hardwick, T.;
Ahmed, N. A Green Approach: Vicinal Oxidative Electrochemical
Alkene Difunctionalization. ChemElectroChem 2019, 6, 1300−1315.
For representative recent examples, see: (b) Ashikari, Y.; Shimizu, A.;
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX