4578
J . Org. Chem. 1999, 64, 4578-4579
Sch em e 1
Alk yl Ca r bon a tes: Efficien t Th r ee
Com p on en t Cou p lin g of Alip h a tic Alcoh ols,
CO2, a n d Alk yl Ha lid es in th e P r esen ce of
Cs2CO3
Seok-In Kim, Feixia Chu, Eric E. Dueno, and
Kyung Woon J ung*
Department of Chemistry, University of South Florida,
4202 East Fowler Avenue, Tampa, Florida 33620-5250, and
Drug Discovery Program, H. Lee Moffitt Cancer Center &
Research Institute, Tampa, Florida 33612-9497
Sch em e 2
Received March 24, 1999
Organic carbonates1 have been utilized ubiquitously in
industry2 as well as in biological and medicinal fields,3 and
aliphatic carbonates, in particular, have exhibited promise
in medical applications.4 Nonetheless, the lack of facile
synthetic methodologies has hampered further studies,5
prompting us to develop efficient procedures for the prepara-
tion of alkyl carbonates via carbon dioxide alkylation.6 As
representatively shown in the Scheme 1, our previously
reported method exploited the cesium base promoted O-
alkylation, allowing primary and secondary alcohols to
couple efficiently with various primary alkyl bromides,
where cesium carbonate was utilized as both a base and a
carbon dioxide source.7 Complementary to this technology,
alternative conditions have also been examined to offer a
general protocol for unsymmetrical carbonates, where CO2
gas was employed in the presence of Cs2CO3 utilized only
as a base.
Unlike other alkali equivalents, cesium alkoxides such as
3 can react with carbon dioxide or bicarbonate to yield alkyl
carbonates (e.g., 4) presumably because alkoxides conjugated
with cesium are considered to constitute “naked anions”,
exhibiting enhanced nucleophilicities.8 Since carbon dioxide
was generated in situ from cesium carbonate upon heating
(i.e., 93 °C), the concentration of CO2 was anticipated to be
low, thereby retarding the alkylation process. In our con-
tinuous efforts to avert these impediments, we envisioned
that an additional source of CO2 gas would facilitate the
carbonic acid formation, and the preliminary results are
elaborated upon hereafter.
(1) For comprehensive reviews on organic carbonates, see: (a) Hegarty,
A. F. In Comprehensive Organic Chemistry; Sutherland, I. O., Ed.; Perga-
mon: London, 1979; Vol. 2, p 1067. (b) Shaikh, A.-A. G.; Sivaram, S. Chem.
Rev. 1996, 96, 951.
(2) (a) Taylor, L. D.; Waller, D. P. U.S. Pat. 5,243,052, 1993. (b) Kolliker,
H.-P.; Staub, A.; Hindermann, P. U.S. Pat. 3,689,510, 1972. (c) Ishida, N.;
Sakamoto, T.; Hasegawa, H. U.S. Pat. 5,370,809, 1994. (d) Ishida, N.;
Hasegawa, H.; Sasaki, U.; Ishikawa, T. U.S. Pat. 5,391,311, 1995. (e)
Pacheco, M. A.; Marshall, C. L. Energy Fuels 1997, 11, 2. (f) Yamaguchi, I.;
Tanaka, H.; Osakada, K.; Yamamoto, T. Macromolecules 1998, 31, 30. (g)
Ho¨cker, H.; Keul, H. Makromol. Chem., Macromol. Symp. 1992, 54/ 55, 9.
(h) J ackson, W. J ., J r.; Darnell, W. R. U.S. Pat. 4, 350, 805, 1982.
(3) (a) Buzzolini, M. G. U.S. Pat. 3,931,275, 1976. (b) Hodge, E. B. U.S.
Pat. 4,751,239, 1988. (c) Ghiron, C.; Rossi, T.; Thomas, R. J . Tetrahedron
Lett. 1997, 38, 3569. (d) Kole, H. K.; Akamatsu, M.; Ye, B.; Yan, X.; Barford,
D.; Roller, P. P.; Burke, T. R., J r. Biochem. Biophys. Res. Commun. 1995,
209, 817. (e) Avramova, P.; Dryanovska, L.; Ilarionov, Y. Pharm. 1983, 38,
443. (f) Avramova, P.; Dryanovska, L.; Ilarionov, Y. Pharm. 1977, 32, 575.
(4) (a) Kawaguchi, T.; Nakano, M.; J uni, K.; Inoue, S.; Yoshida, Y. Chem.
Pharm. Bull. 1983, 31, 1400. (b) Acemoglu, M.; Bantle, S.; Mindt, T.;
Nimmerfall, F. Macromolecules 1995, 28, 3030. (c) Zhu, K. J .; Hendren, R.
W.; J ensen, K.; Pitt, C. G. Macromolecules 1991, 24, 1736.
When the reaction mixture was saturated with carbon
dioxide by bubbling the gas continuously, carbonylation of
alcohol 1 was complete at ambient temperature, rendering
exclusively the desired mixed carbonate 2 through the three
component coupling of cesium alkoxide 3, CO2, and alkyl
bromide as mechanistically illustrated in Scheme 2. The
addition of tetrabutylammonium iodide (TBAI) accelerated
the reactions significantly while N,N-dimethylformamide
was the solvent of choice. More importantly, cesium carbon-
ate played the most critical role in the three way couplings
since the use of different bases including other alkali
carbonates and amine bases proved inefficient. It is strongly
believed that the cesium alkoxides constitute weakly coor-
dinated species, enhancing the nucleophilicities enough to
effect the nucleophilic attack to the relatively inert carbon
dioxide at room temperature, which is not the case with
other alkali alkoxides.7,8 These superior procedures were
facile, allowing for moderate reaction conditions such as
lower temperatures, shorter reaction times, and substrate
versatilities better than those in the aforementioned meth-
odology. Some representative examples are discussed below.
(5) For alcoholysis of phosgene or its derivatives, see: (a) Eckert, H.;
Forster, B. Angew. Chem., Int. Ed. Engl. 1987, 26, 894. (b) Burk, R. M.;
Roof, M. B. Tetrahedron Lett. 1993, 34, 395. (c) Keohan, F. L.; Freelin, R.
G.; Riffle, J . S.; Yilgo¨r, I.; McGrath, J . E. J . Polym. Sci. Polym. Chem. Ed.
1984, 22, 679. For organic carbonate exchange, see: (d) Grynkiewicz, G.;
J urczak, J .; Zamojski, A. Tetrahedron 1975, 31, 1411. (e) Shaikh, A.-A. G.;
Sivaram, S. Ind. Eng. Chem. Res. 1992, 31, 1167. (f) Bertolini, G.; Pavich,
G.; Vergani, B. J . Org. Chem. 1998, 63, 6031. For inorganic carbonate
alkylation, see: (g) Cella, J . A.; Bacon, S. W. J . Org. Chem. 1984, 49, 1122.
(h) Bosworth, N.; Magnus, P.; Moore, R. J . Chem. Soc., Perkin Trans. 1
1973, 2694. (i) Lissel, M.; Dehmlow, E. V. Chem. Ber. 1981, 114, 1210.
(6) Carbon dioxide has been an attractive reagent because it is environ-
mentally safe and economically inexpensive. For some examples of using
carbon dioxide in carbonate formation, see: (a) McGhee, W.; Riley, D. J .
Org. Chem. 1995, 60, 6205. (b) Kuran, W.; Pasynkiewicz, S.; Skupinska, J .
Makromol. Chem. 1977, 178, 47. (c) Tsuda, T.; Chujo, Y.; Saegusa, T. J .
Am. Chem. Soc. 1980, 102, 431. (d) Bongini, A.; Cardillo, G.; Orena, M.;
Porzi, G.; Sandri, S. J . Org. Chem. 1982, 47, 4626. (e) Frevel, L. K. U.S.
Pat. 3,657,310, 1972. (f) Tsuda, T.; Chujo, Y.; Saegusa, T. J . Chem. Soc.,
Chem. Commun. 1976, 415. (g) Inoue, S.; Koinuma, H.; Tsuruta, T. Polym.
Lett. 1969, 7, 287. (h) Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S. J . Chem.
Soc., Chem. Commun. 1981, 465. (i) Fang, S.; Fujimoto, K. Appl. Catal. A:
Gen. 1996, 142, L1-L3. (j) Hori, Y.; Nahano, Y.; Nakao, J .; Fukuhara, T.;
Taniguchi, H. Chem. Express 1986, 1, 224. (k) Carlo, V.; Rino, D. Span Pat.
479,522, 1980. (l) Kao, J .-L.; Wheaton, G. A.; Shalit, H.; Sheng, M. N. U.S.
Pat. 4,247,465, 1981. (m) McGhee, W. D.; Talley, J . J . U.S. Pat. 5,302,717,
1994. (n) Oi, S.; Kuroda, Y.; Matsuno, S.; Inoue, Y. Chem. Soc. J pn. 1993,
985. (o) Casadei, M. A.; Cesa, S.; Feroci, M.; Inesi, A.; Rossi, L.; Moracci, F.
M. Tetrahedron 1997, 53, 167. (p) Sakakura, T.; Saito, Y.; Okano, M.; Choi,
J .-C.; Sako, T. J . Org. Chem. 1998, 63, 7095. (q) Darensbourg, D. J .;
Niezgoda, S. A.; Draper, J . D.; Reibenspies, J . H. J . Am. Chem. Soc. 1998,
120, 4690. (r) Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J . Am. Chem.
Soc. 1998, 120, 11018.
(7) For our cesium promoted O-alkylations, see: (a) Dueno, E. E.; Chu,
F.; Kim, S.-I.; J ung, K. W. Tetrahedron Lett. 1999, 40, 1843. (b) Chu, F.;
Dueno, E. E.; J ung, K. W. Tetrahedron Lett. 1999, 40, 1847.
(8) Galli, C. Org. Prep. Proced. Int. 1992, 24, 287, and references therein.
10.1021/jo990520g CCC: $18.00 © 1999 American Chemical Society
Published on Web 06/09/1999