D. Gudat, V. Bajorat, S. Häp, M. Nieger, G. Schröder
FULL PAPER
than that due to Ph2PLi. Similar results were obtained when the
reduction of 1a[Cl] was performed with sodium.
atoms as a riding model, wR2(F2) ϭ 0.145, R[F, I > 2σ(I)] ϭ 0.049.
Crystallographic data (excluding structure factors) for the structure
reported in this paper have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication no.
CCDC-101915. Copies of the data can be obtained free of charge
on application to CCDC, 12 Union Road, Cambridge CB2 1EZ,
U.K. [Fax: (internat.) ϩ 44-1223/336033; E-mail: deposit@ccdc.ca-
m.ac.uk].
Benzophosphole 8: A freshly prepared solution of phenyllithium
(26.6 mmol) in 100 mL of THF was added dropwise to a suspen-
sion of 1a[Cl] (15.7 g, 21.7 mmol) in 80 mL of THF at 0°C. The
mixture was stirred for 5 h at 0°C, then treated with 20 mL of
Et2O, and filtered. The filtrate was concentrated to dryness, the
residue was refluxed for 1 h with 250 mL of toluene, and the hot
solution was filtered. Slow cooling of the filtrate resulted in the
deposition of a crystalline precipitate, which was collected by fil-
tration and dried in vacuo to give 14.3 g (90%) of 8 as black
needles; m.p. 160°C. Ϫ 1H NMR (CDCl3): δ ϭ 7.55 [m, 12 H,
Acknowledgments
Financial support by the Deutsche Forschungsgemeinschaft and
the Fonds der Chemischen Industrie is gratefully acknowledged.
Hmeta(PPh3)], 7.38 [m,
6 H, Hpara(PPh3)], 7.27 [m, 12 H,
Hortho(PPh3)], 7.21Ϫ7.15 [m, 3 H, Hortho/para(PPh)], 6.91 [m, 2 H,
Hmeta(PPh)], 6.08 (m, 2 H, 5-H/6-H), 5.94 (m, 2 H, 4-H/7-H). Ϫ
13C{1H} NMR (CDCl3):[18] δ ϭ 154.6 [m, 1JP(B),C ϭ 58.7 Hz, ΣJ ϭ
2.6 Hz, Cipso(PPh)], 148.3 (m, ΣJ ϭ 29 Hz, 2JP(B),C ϭ 0.5 Hz, C-3a/
[1] [1a]
[1b]
F. Mathey, Coord. Chem. Rev. 1994, 137, 1. Ϫ
K. B.
Dillon, F. Mathey, J. F. Nixon, Phosphorus: The Carbon Copy,
J. Wiley & Sons, Chichester, 1998, p. 227.
2
C-7a), 133.9 [m, JP(A),C ϭ 9.6 Hz, 4JP(B),C ϭ 2.0 Hz, Cortho(PPh3)],
[2] [2a]
[2b]
E. J. Padma Malar, J. Org. Chem. 1992, 57, 3694. Ϫ
D.
4
1
130.8 [m, JP(A),C ϭ 2.3 Hz, Cpara(PPh3)], 129.7 [m, JP(A),C
ϭ
B. Chesnut, L. D. Quin, J. Am. Chem. Soc. 1994, 116, 9638. Ϫ
3
3
[2c]
86.7 Hz, JP(B),C ϭ ϩ3.1 Hz, Cipso(PPh3)], 128.2 [d, JP(B),C
ϭ
B. Goldfuss, P. v. R. Schleyer, F. Hampel, Organometallics
3
6.9 Hz, Cmeta(PPh)], 127.8 [m, JP(A),C ϭ 11.1 Hz, Cmeta(PPh3)],
1996, 15, 1755.
[3]
126.4 [d, 2JP(B),C ϭ 4.6 Hz, Cortho(PPh)], 125.7 [s, Cpara(PPh)], 116.6
See, for example: P. Jutzi, T. Redeker, Eur. J. Inorg. Chem. 1998,
663, and references cited therein
1
(m, ΣJ ϭ 1.9 Hz, C-4/C-7), 116.3 (s, C-5/C-6), 33.3 (m, JP(A),C
ϭ
[4] [4a]
A. Espinosa Ferao, B. Deschamps, F. Mathey, Bull. Soc.
3
1
[4b]
119.2 Hz, JP(A)Ј C ϭ Ϫ9.3 Hz, JP(B),C ϭ 11.4 Hz, C-1/C-3). Ϫ
,
Chim. Fr. 1993, 130, 695. Ϫ
S. Holand, M. Jeanjean, F.
C50H39P3 (732.78): calcd. C 81.95, H 5.36; found C 81.0, H 5.1.
Mathey, Angew. Chem. 1997, 109, 117; Angew. Chem. Int. Ed.
Engl. 1997, 36, 98.
Reduction of Benzophosphole 8 with Lithium: To a solution of 1.00 g
(1.37 mmol) of 8 in 25 mL of THF was added an excess of lithium
powder, and the resulting mixture was allowed to react for 30 min
under sonification with ultrasound. 1H- and 31P-NMR-spectro-
scopic assays confirmed the formation of 9[Li2] (accounting for ca.
85Ϫ90% of the phosphorus-containing material), some Ph2PLi (ca.
10Ϫ15%), and phenyllithium. Characterization of the major prod-
uct 9[Li2] was achieved in situ by multinuclear (1H-, 13C-,
31P-)NMR analyses. All attempts to isolate and further purify the
product were unsuccessful, invariably resulting in partial or com-
[5]
[6]
For the generation of side-chain-functionalized phospholides in
[5a]
metal coordination spheres, see:
Organometallics 1992, 11, 1411. Ϫ
Glinsböckel, B. Ganter, Organometallics 1997, 16, 2862. Ϫ
[5c] C. Ganter, L. Brassat, B. Ganter, Chem. Ber. 1997, 130, 1771.
H. J Cristau, F. Plenat, in The Chemistry of Organophosphorus
Compounds, vol. 3 (Ed.: F. R. Hartley), J. Wiley & Sons, Chich-
ester, 1994, p. 45.
D. Gudat, V. Bajorat, M. Nieger, Bull. Soc. Chim. Fr. 1995,
132, 280.
For the synthesis and characterization of a benzo[b]phosphol-
ide, see: E. Niecke, M. Nieger, P. Wenderoth, Angew. Chem.
1994, 106, 362; Angew. Chem. Int. Ed. Engl. 1994, 33, 353.
A. Schmidpeter, M. Thiele, Angew. Chem. 1991, 103, 333; An-
gew. Chem. Int. Ed. Engl. 1991, 30, 308.
D. Gudat, Phosphorus Sulfur Silicon 1993, 77, 238.
W. A. Herrmann, C. Zybill, in Synthetic Methods of Organome-
tallic and Inorganic Chemistry, vol. 1 (Ed.: W. A. Herrmann),
Georg Thieme Verlag, Stuttgart, 1996, p. 41.
J. C. Tebby, in Phosphorus-31 NMR Spectroscopy in Stereoch-
emical Analysis (Eds.: J. G. Verkade, L. D. Quin), VCH, Deer-
field Beach, 1987, p. 1.
B. Deschamps, F. Mathey,
C. Ganter, L. Brassat, C.
[5b]
[7]
[8]
1
plete decomposition. Ϫ 9[Li2]: H NMR (CDCl3): δ ϭ 7.60 (m, 1
[9]
H, 6-H), 7.44 [m, 4 H, Hmeta(PPh2)], 7.38 (m, 1 H, 4-H/5-H), 7.22
(m, 1 H, 5-H/4-H), 7.13 [m, 2 H, Hmeta(PPh)], 6.91 [m, 4 H,
[10]
[11]
H
ortho(PPh2)], 6.80 (m, 1 H, 7-H), 6.68 [m, 2 H, Hortho(PPh)], 6.40
[m, 2 H, Hpara(PPh2)], 6.28 [m, 1 H, Hpara(PPh)]. Ϫ 13C{1H}NMR
1
3
(CDCl3): δ ϭ 160.2 [dd, JP(A),C ϭ 45.8 Hz, JP(X),C ϭ 7.6 Hz,
Cipso(PPh)], 146.6 [dd, JP(M),C ϭ 14.3 Hz, JP(X),C ϭ 5.0 Hz,
Cipso(PPh2)], 144.8 (dd, JP(M)/A,C ϭ 15.0 Hz, JP(X),C ϭ 7.2 Hz, C-
3a/C-7a), 144.5 (dd, JP(M)/A,C ϭ 7.5, 1 Hz, JP(X),C ϭ 1 Hz, C-7a/
C-3a), 139.2 (ddd, JP(X),C ϭ 46.1 Hz, JP(M),C ϭ 30.3, JP(A),C
6.3 Hz, C-3), 133.6 [dd, JP(M),C ϭ 18.7 Hz, JP(X),C ϭ 1.5 Hz,
Cmeta(PPh2)], 128.2 [dd, JP(A),C ϭ 17.8 Hz, JP(X),C ϭ 2.0 Hz,
[12]
[13]
1
3
1
3
1
3
All calculations were performed with the Gaussian 94 package:
M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G.
Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Peters-
son, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V.
G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y.
Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R.
Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees,
J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A.
Pople, Gaussian 94, Rev. B.3, Gaussian, Inc., Pittsburgh PA,
1995.
1
1
3
ϭ
3
5
3
5
3
C
meta(PPh)], 126.9 [d, JP(M),C ϭ 5.7 Hz, Cortho(PPh2)], 126.1 [d,
3JP(M),C ϭ 5.7 Hz, Cortho(PPh)], 120.6 (dd, JP(A),C ϭ 7 Hz,
3
3JP(X),C ϭ 6 Hz, C-7), 120.4 (dd, 4JP(A)/M,C ϭ 4 Hz, 4JP(X),C ϭ 6 Hz,
4
4
C-4/C-5), 119.7 (ddd, JP(A)/M,C ϭ 5.5, 1.7 Hz, JP(X),C ϭ 12.0 Hz,
C-5/C-4), 118.6 (dd, JP(M),C ϭ 15.7 Hz, JP(X),C ϭ 4.8 Hz, C-6),
116.5 [s, Cpara (PPh2)], 116.0 [s, Cpara(PPh)], 116.0 (ddd, JP(X),C
52 Hz, JP(A),C ϭ 8 Hz, JP(M),C ϭ 5 Hz).
[14]
[15]
3
4
D. Gudat, M. Nieger, M. Schrott, Chem. Ber. 1995, 128, 259.
International Tables for Crystallography, vol. C (Ed.: A. J. C.
Wilson), Kluwer Academic Publishers, Dordrecht, 1992, p. 680.
1
ϭ
1
3
[16] [16a] N. Burford, B. W. Royan, A. Linden, T. S. Cameron, Inorg.
[16b]
Chem. 1989, 28, 144. Ϫ
N. Burford, A. I. Dipchand, B. W.
X-ray Crystal Structure Determination of 4[Li(THF)4]:
Royan, P. S. White, Inorg. Chem. 1990, 29, 4938. Ϫ [16c] N. Bur-
ford, A. I. Dipchand, B. W. Royan, P. S. White, Acta Crys-
tallogr. 1989, C45, 1485.
C38H24Ni2O6P3 · Li(THF)4 · Et2O, colorless, Mr ϭ 1156.4; mono-
˚
clinic, space group P21/c (No. 14), a ϭ 32.3511(7) A, b ϭ
[17]
[18]
˚
˚
13.8186(5) A, c ϭ 29.4593(8) A, β ϭ 116.262(2)°, V ϭ 11810.3(6)
A. W. Johnson, Ylides and Imines of Phosphorus, J. Wiley &
Sons, New York, 1993, p. 139.
A , Z ϭ 8, µ(Mo-Kα) ϭ 0.78 mmϪ1, T ϭ 123(2) K, 68443 reflec-
3
˚
Couplings in higher order multiplets were determined by spec-
tions measured (2θmax ϭ 50°), 19310 independent reflections used
for structure solution (direct methods) and refinement (on F2 aniso-
tropic with SHELXL-93), 1348 parameters, 2915 restraints, H
4
tral analysis and by using JP(B),P(BЈ) ϭ 5.5 Hz.
Received December 28, 1998
[I98453]
1174
Eur. J. Inorg. Chem. 1999, 1169Ϫ1174