JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
15 R. Yang, R. Tian, J. Yan, Y. Zhang, J. Yang, Q. Hou, W.
Yang, C. Zhang, Y. Cao, Macromolecules 2005, 38, 244–253.
change the selenium content via simply change the feeding
ratio to get the materials with the different refractive index,
which probably was an effective method to expand the appli-
cation area of polystyrene.
16 E. Kobayashi, N. Metaka, S. Aoshima, J. Furukawa, J.
Polym. Sci. Part A: Polym. Chem. 1992, 30, 227–233.
17 N. Ma, Y. Li, H. Ren, H. Xu, Z. Li, X. Zhang, Polym. Chem.
2010, 1, 1609–1613.
CONCLUSIONS
18 P. Han, N. Ma, H. Ren, H. Xu, Z. Li, Z. Wang, X. Zhang,
Langmuir 2010, 26, 14414–14418.
In summary, the polymerizable iniferter PVBS was designed
and synthesized. Hyperbranched PS was synthesized via the
combination of SCVP and iniferter polymerization techniques
using PVBS as the mediator. The branched nature of the result-
ing polymers was confirmed by 77Se NMR spectroscopy and
gel permeation chromatograph (GPC). The incorporation of
selenium can improve the refractive index of optical materials
effectively. And the RI value can be adjusted by simply chang-
ing the selenium content in polymers. Simultaneously, these
serial selenium-containing materials also have good transpar-
ency and relative high Abbe’s numbers. So, in consider of the
multifaceted functionalities mentioned above and high sele-
nium content analyzed, the synthesized hyperbranched poly-
mers may have potential application in optical area.
19 H. Xu, J. Gao, Y. Wang, Z. Wang, M. Smet, W. Dehaen, X.
Zhang, Chem. Commun. 2006, 796–798.
20 J. Zeng, J. Zhu, Z. Zhang, X. Pan, W. Zhang, Z. Cheng, X.
Zhu, J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 2211–2218.
21 J. Zeng, Z. Zhang, J. Zhu, N. Zhou, Z. Cheng, X. Zhu,
J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 2606–2613.
22 J. Zeng, J. Zhu, X. Pan, Z. Zhang, N. Zhou, Z. Cheng, W.
Zhang, X. Zhu, Polym. Chem. 2013, 4, 3453–3457.
23 F. Ma, J. Zhu, Z. Zhang, X. Pan, N. Zhou, X. Zhu, J. Polym.
Sci. Part A: Polym. Chem. 2013, 51, 3159–3165.
24 Y. Zhan, Z. Zhang, X. Pan, J. Zhu, N. Zhou, X. Zhu,
J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 1656–1663.
25 C. Zhang, Y. Zhou, Q. Liu, S. Li, S. b. Perrier, Y. Zhao, Mac-
romolecules 2011, 44, 2034–2049.
26 F. Bally, E. Ismailova, C. Brochon, C. A. Serra, G.
Hadziioannou, Macromolecules 2011, 44, 7124–7131.
ACKNOWLEDGMENTS
27 J. F. Douglas, J. Roovers, K. F. Freed, Macromolecules 1990,
23, 4168–4180.
The financial support from the National Nature Science Foun-
dation of China (No. 21074082, 21374067, and 21302132), the
Priority Academic Program Development (PAPD) of Jiangsu
Higher Education Institutions, and the Program of Innovative
Research Team of Soochow University are gratefully
acknowledged.
28 B. I. Voit, A. Lederer, Chem. Rev. 2009, 109, 5924–5973.
29 C. M. Paleos, D. Tsiourvas, Z. Sideratou, L. A. Tziveleka,
Expert Opin. Drug Del. 2010, 7, 1387–1398.
˚
30 R. Mezzenga, L. Boogh, J. A. E. Manson, Compos. Sci. Tech-
nol. 2001, 61, 787–795.
31 R. M. Crooks, M. Zhao, L. Sun, V. Chechik, L. K. Yeung, Acc.
Chem. Res. 2001, 34, 181–190.
REFERENCES AND NOTES
32 S. Krishnan, C. J. Weinman, C. K. Ober, J. Mater. Chem.
2008, 18, 3405–3413.
1 L. Jin-gang, U. Mitsuru, J. Mater. Chem. 2009, 19, 8907–8919.
33 Y. Zhou, W. Huang, J. Liu, X. Zhu, D. Yan, Adv. Mater. 2010,
22, 4567–4590.
2 J. M. Ziebarth, A. K. Saafir, S. Fan, M. D. McGehee, Adv.
Funct. Mater. 2004, 14, 451–456.
34 T. S. Kwon, S. Kondo, K. Takagi, H. Kunisada, Y. Yuki,
Polym. J. 1999, 31, 483–487.
3 J. Garcia-Sucerquia, W. Xu, M. Jericho, H. Kreuzer, J. Opt.
Lett. 2006, 31, 1211–1213.
35 K. Takagi, Y. Nishikawa, H. Kunisada, Y. Yuki, Polym. J.
2000, 32, 970–973.
€
4 C. Lu, B. Yang, J. Mater. Chem. 2009, 19, 2884–2901.
5 L. H. Lee, W. C. Chen, Chem. Mater. 2001, 13, 1137–1142.
ꢀ
36 J. M. J. Frechet, M. Henmi, I. Gitsov, S. Aoshima, M. R.
6 N. D. Rees, S. W. James, R. P. Tatam, G. Ashwell, J. Opt.
Lett. 2002, 27, 686–688.
Leduc, R. B. Grubbs, Science 1995, 269, 1080–1083.
€
37 H. Mori, A. H. Muller, P. F. Simon, Hyperbranched Polymers:
7 J. Seferis, J. Brandrup, E. Immergut, Polymer Handbook,
Wiley: New York, 1989.
Synthesis, Properties, and Applications, John Wiley & Sons,
Inc., NJ, 2011, 139–174.
8 W. Z. Yuan, R. Hu, J. W. Y. Lam, N. Xie, C. K. W. Jim, B. Z.
Tang, Chem. Eur. J. 2012, 18, 2847–2856.
38 Z. Zhou, D. Yan, Macromolecules 2008, 41, 4429–4434.
39 J. Schmitt, N. Blanchard, J. Poly, Polym. Chem. 2011, 2, 2231–
2238.
9 R. A. Minns, R. A. J. M. S. Gaudiana, Pure Appl. Chem. 1992,
29, 19–30.
€
40 D. Yan, A. H. E. Muller, K. Matyjaszewski, Macromolecules
10 Y. Suzuki, K. Murakami, S. Ando, T. Higashihara, M. Ueda,
J. Mater. Chem. 2011, 21, 15727–15731.
1997, 30, 7024–7033.
€
41 K. Matyjaszewski, S. G. Gaynor, A. H. E. Muller, Macromole-
11 S. D. Bhagat, J. Chatterjee, B. Chen, A. E. Stiegman, Macro-
molecules 2012, 45, 1174–1181.
cules 1997, 30, 7034–7041.
42 C. Y. Hong, C. Y. Pan, J. Mater. Chem. 2002, 51, 785–791.
€
12 C. Lu, C. Guan, Y. Liu, Y. Cheng, B. Yang, Chem. Mater.
2005, 17, 2448–2454.
€
43 P. F. Simon, A. H. Muller, Macromol. Theory Simul. 2000, 9,
621–627.
13 J. G. Speight, Lange’s Handbook of Chemistry, (16th Edi-
tion), McGraw-Hill, New York, 2005.
44 N. K. Kildahl, J. Chem. Educ. 1995, 72, 423–424.
45 M. E. Mackay, G. Carmezini, Chem. Mater. 2002, 14, 819–825.
14 N.-H. You, N. Fukuzaki, Y. Suzuki, Y. Nakamura, T.
Higashihara, S. Ando, M. Ueda, J. Polym. Sci. Part A: Polym.
Chem. 2009, 47, 4428–4434.
46 W. J. Feast, N. M. Stainton, J. Mater. Chem. 1995, 5, 405–
411.
510
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2014, 52, 504–510