Cl
N
Cl
N
for technical assistance with HPLC separation of enantiomers,
and Ms L. Marcil for secretarial and technical assistance.
N
N
N
N
N
N
HO
HO
X
X
S
S
Notes and references
18 X = H
19 X = NH2
20 X = H
21 X = NH2
S
S
† Selected data for 10b: colorless oil; dH(CDCl3): 8.03 (m, 2H), 7.57 (dt,
1H, J 7, 1), 7.44 (t, 2H, J 7), 5.85 (m, 1H), 4.84 and 4.76 (t’s, 1H, J 7), 4.68
and 4.39 (m’s, 1H), 4.48 and 4.27 (m’s, 1H), 3.30 (m, 2H), 2.85 (m, 1H). For
16: dH(DMSO-d6) 8.34 (d, 1H, J 7.5), 7.83 (br s, 1H), 7.59 (br s, 1H), 6.39
(m, 1H), 5.57 (t, 1H, J 5.5), 4.62 (t, 1H, J 6), 3.75 (t, 2H, J 6), 3.59 (m, 2H).
For 17; dH(DMSO-d6) 8.10 (d, 1H, J 7 Hz), 7.78 (br s, H), 7.54 (br s, 1H),
6.41 (t, 1H, J 2), 5.36 (t, 1H, J 5.5), 4.81 (t, 1H, J 7 Hz), 3.45 (m, 4H). For
19: dH(DMSO-d6) 8.45 (s, 1H), 7.03 (br s, 2H), 6.40 (t, 1H, J 4), 5.53 (t, 1H,
J 6), 4.73 (t, 1H, J 7), 3.80 (dd, 1H, J 13, 4.5), 3.74 (t, 2H, J 6), 3.63 (dd,
1H, J 13, 5); dC(DMSO-d6) 159.80, 153.49, 150.01, 141.95, 123.61, 65.57,
64.52, 56.23, 42.93; HRMS (FAB): M+ calc. for C9H11ClN5OS2 304.00937,
found 304.00880. For 21: dH(DMSO-d6) 8.34 (s, 1H), 7.02 (br s, 2H), 6.44
(t, 1H, J 3), 5.41 (t, 1H, J 6), 4.86 (t, 1H, J 7), 3.58 (m, 3H), 3.49 (m, 1H);
HRMS (FAB): M+ calc. for C9H11ClN5OS2 304.00937, found 304.00840.
For 26: mp 108–110 °C; dH(DMSO-d6) 8.06 (d, 1H, H-6A, J 7.63), 7.20 (br
d, 2H, NH2), 6.47 (t, 1H, J 4.4), 5.74 (d, 1H, J 7.42) 5.50 (t, 1H), 4.61 (t, 1H,
J 6.5 Hz), 3.74 (t, 2H, J 6.00 Hz), 3.46 (dd, 1H, J 4.30, 12.9), and 3.36 (dd,
1H, J 4.1, 10.4); HRMS (FAB): M+ calc. for C8H12N3O2S2 246.03709,
found 246.03610. For 27: mp 200–202 °C (decomp.); dH(DMSO-d6) 7.90
(d, 1H, J 7.35), 7.17 (br d, 2H), 6.48 (d, 1H, J 3.72), 5.69 (d, 1H, J 7.47),
5.38 (t, 1H), 4.74 (t, 1H, J 6.83), 3.43 (m, 4H); HRMS (FAB): M+ calc. for
C8H12N3O2S2 246.03709, found 246.034640.
i
O
O
N
N
N
N
NH
NH
HO
HO
N
X
N
X
S
S
22 X = H
23 X = NH2
24 X = H
25 X = NH2
S
S
Scheme 4 Reagents and conditions: i, 25% aq. Me3N–H2O, 55–65%.
or the cis+trans ratio. The next step was the separation of the
isomers 12 or 13. This was achieved by flash chromatography
on silica gel by prior acetylation of the amino group (cytosine)
or by reverse chromatography HPLC after deprotection
(5-fluorocytosine). The protecting groups were then removed
by treatment with methanolic ammonia to give the desired
nucleosides 14–17 in high yields. The relative stereochemistry
of these products was assigned by difference NOE spectra.
Similarly, uracil, thymine, adenine and guanine derivatives
were produced from 11b using the same conditions. However,
in the case of hypoxanthine and guanine analogs 22–25,
synthesis was undertaken by treating the corresponding
6-chloropurine or 2-amino-6-chloropurine derivatives 18–21
with 20 equiv. of an aqueous Me3N solution in water (Scheme
4).
The anti-HIV activity of (±)-1,3-dithiolane nucleoside ana-
logues was evaluated in MT-4 (human T helper) cells at
concentrations up to 100 mg ml21 and compared with 3TC™
(Epivir)12 and the 5-fluoro derivative (FTC).13 In this assay,
only cis cytosine and 5-fluorocytosine derivatives 14 and 16
displayed inhibitory activity at ID50 of 9.3 and 4.8 mg ml21 and
were not cytotoxic at 100 mg ml21, whereas 3TC™ and FTC
showed anti-HIV activity at 0.3 and 0.14 mg ml21, respectively.
All the other nucleosides did not exhibit antiviral activity with
no cytotoxicity up to 100 mg ml21. In contrast, cis and trans
6-chloropurine derivatives 18 and 20 showed cytotoxicity at
1 H. Mitsuya, J. K. Weinhold, P. A. Furman, M. H. St-Clair, S. Nusinoff-
Lehrman, R. C. Gallo, D. Bolognesi, D. W. Barry, S. Broder, Proc. Natl.
Acad. Sci. U.S.A., 1985, 82, 7096.
2 H. Mitsuya and S. Broder, Proc. Natl. Acad. Sci. U.S.A., 1986, 83, 1911;
R. Yarchoan, H. Mitsuya, R. V. Thomas, J. M. Pluda, N. R. Hartman,
C.-F. Perno, K. S. Marczyk, J.-P. Allain, D. G. Johns and S. Broder,
Science, 1989, 245, 412; T.-S. Lin, R. F. Schinazi and W. H. Prusoff,
Biochem. Pharmacol., 1987, 36, 2713.
3 (a) R. W. Klecker, J. M. Collins, R. Yarchoan, R. Thomas, J. F. Jenkins,
S. Broder, C. E. Myers Cli, Pharmacol. Ther., 1987, 47, 407; (b) M. S.
Hirsch and J. C. Kaplan, Antimicrob. Agents Chemother., 1987, 31, 939;
(c) R. Yarchoan, Lancet, 1988, i, 76; (d) M. L. Peterson and R. Vince,
J. Med. Chem., 1991, 34, 2787 and references cited therein.
4 (a) B. Belleau, L. Brasili, L. Chan, M. D. DiMarco, B. Zacharie, N.
Nguyen-Ba, H. J. Jenkinson, J. A. V. Coates, J. M. Cameron, Bioorg.
Med. Chem. Lett., 1993, 3, 1723; (b) M. J. Bamford,D. C. Humber, R.
Storer, Tetrahedron Lett., 1991, 32, 271 and references cited therein; (c)
J. Branalt and I. Kvarnstrom, J. Org. Chem., 1996, 61, 3604 and
references cited therein.
5 (a) T. S. Mansour, C. A. Evans, M. A. Siddiqui, M. Charron, B.
Zacharie, N. Nguyen-Ba, N. Lee and B. Korba, Nucleosides Nucleo-
tides, 1997, 16, 993; (b) H. Soudeyns, X. J. Yao, Q. Gao, B. Belleau,
J.-L. Kraus, N. Nguyen-Ba, B. Spira and M. A. Wainberg, Antimicrob.
Agents Chemother., 1991, 35, 1386; (c) J. A. V. Coates, N. Cammack,
H. J. Jenkinson, I. M. Mutton, B. A. Pearson, R. Storer, J. M. Cameron
and C. R. Penn, Antimicrob. Agents Chemother., 1992, 36, 202; (d)
M. W. Chun, D. H. Shin, H. R. Moon, J. Lee, H. Park and L. S. Jeong,
Bioorg. Med. Chem. Lett., 1997, 7, 1475.
CD50 of 10 mg ml21
.
Described herein is a novel class of anti-HIV (±)-1,3-dithio-
lane nucleoside analogues. The biological results demonstrate
that replacement of an oxygen atom of the oxathiolane with
sulfur causes reduction in antiviral activity. It should be noted
that compounds 14 and 16 are racemic. Resolution of the
enantiomers may improve the activity. Therefore, enantiomeric
separations of the racemic cis 14 was undertaken by chiral
HPLC.14 This gave the two enantiomers 26 and 27 in a
6 U.S. Pat. 05047407, BioChem Pharma Inc.; M. A. Nowak, S. Bon
hoeffer, A. M. Hill, R. Bochme, H. C. Thomas and H. McDade, Proc.
Natl. Acad. Sci. U.S.A., 1996, 93, 4398.
NH2
NH2
N
N
7 J. A. Secrist III, K. N. Tiwari, A. T. Shortnacy-Fowler, L. Messini, J. M.
Riordan and J. A. Montgomery, J. Med. Chem., 1998, 41, 3865; M. R.
Dyson, P. L. Coe and R. T. Walker, J. Med. Chem., 1991, 34, 2782.
8 H. Vorbruggen, K. Krolikiewicz and B. Bennua, Chem. Ber., 1981, 114,
1234.
N
O
N
O
S
S
HO
HO
S
S
26 [α]2D5 +75 (c 0.10, H2O)
27 [α]2D5 –70 (c 0.10, H2O)
9 N. Nguyen-Ba, W. Brown, N. Lee and B. Zacharie, Synthesis, 1998,
759.
10 M. Therien, J. Y. Gauthier and R. N. Young, Tetrahedron Lett., 1988,
29, 6733.
11 J. Y. Gauthier, T. Henien, L. Lo, M. Therien and R. N. Young,
Tetrahedron Lett., 1988, 29, 6729.
12 J. M. Cameron, P. Collis, M. Daniel, R. Storer and P. Wilcox, Drugs
Future, 1993, 18, 319 and references cited therein.
13 L. W. Frick, L. St-John, L. C. Taylor, G. R. Painter, P. A. Furman, D. C.
Liotta, E. S. Furfine and D. J. Nelson, Antimicrob. Agents Chemother.,
1993, 37, 2285.
reasonable yield. It was found that isomer 27 possesses the
natural configuration as evidenced by enzymatic resolution of
the racemic mixture. Thus treatment of the mixture of the two
enantiomers with cytidine deaminase converted only 27 to its
corresponding uracil derivative. However, the unnatural en-
antiomer 26 was recovered and characterized by comparison of
HPLC retention time and optical rotation with the previously
isolated isomer. Both enantiomers were submitted for anti-HIV
evaluation. Neither of the two compounds displayed improved
antiviral activity.
14 Chiral Column: Cyclobond I 2000 Beta-RSP 4.6 mm ID 3 250 mm;
mobile phase 10% MeCN–0.05% (AcOH–Et3N, pH 6.74); pressure 965
psi and flow rate 0.50 ml min21. For 26: tR = 19.880 min; for 27: tR
=
We thank Drs T. Bowlin and R. Storer for reading the
manuscript, Drs P. Hopewell and N. Cammack of Glaxo Group
Research for testing the compounds, Ms L. Bernier and J. Dugas
22.201 min.
Communication 9/01927H
1246
Chem. Commun., 1999, 1245–1246