Q. Zhang, K.K. Wang / Journal of Organometallic Chemistry 581 (1999) 108–115
115
1
3342, 1609, 1582, 1244, 733 cm−1. H l 7.13(1 H, d,
J=8.8 Hz), 6.63 (1 H, d, J=8 Hz), 6.60 (1 H, s), 4.77
(1 H, br s, OH), 2.66 (1 H, m), 2.39 (1 H, dm, J=12
and 3 Hz), 2.12 (1 H, tm, J=11 and 3 Hz), 1.94–1.1
(16 H, m), 0.92 (3 H, t, J=7.1 Hz); 13C l 153.13,
143.85, 132.76, 126.21, 115.38, 112.71, 43.74, 38.21,
37.84. 35.61, 34.34, 33.92, 30.96, 30.38, 26.92, 26.43,
22.84, 14.13; MS (m/z) 258 [M+], 201, 174, 159, 145,
Chem. Rev. 89 (1989) 1681. (i) N. Martin, C. Seoane, M.
Hanack, Org. Prep. Proc. Int. 23 (1991) 237. (j) W. Oppolzer, in:
B.M. Trost, I. Fleming (Eds.), Comprehensive Organic Synthe-
sis, Vol. 5, Pergamon Press, New York, 1991, p. 385. (k) T.-S.
Chou, Rev. Heteroatom. Chem. 8 (1993) 65.
[2] Y. Ito, M. Nakatsuka, T. Saegusa, J. Am. Chem. Soc. 102 (1980)
863.
[3] (a) K.C. Nicolaou, W.E. Barnette, P. Ma, J. Org. Chem. 45
(1980) 1463. (b) W. Oppolzer, D.A. Roberts, T.G.C. Bird, Helv.
Chem. Acta 62 (1979) 2017.
[4] (a) B.D. Lenihan, H. Shechter, J. Org. Chem. 63 (1998) 2072. (b)
Y.W. Andemichael, Y.G. Gu, K.K. Wang, J. Org. Chem. 57
(1992) 794. (c) K.K. de Fonseka, J.J. McCullough, A.J.
Yarwood, J. Am. Chem. Soc. 101 (1979) 3277.
1
133. 54: H (partial) l 7.29 (1 H, d, J=8.2 Hz), 6.60 (2
H, m), 6.51 (1 H, dt, J=15.4 and 1.6 Hz), 5.94 (1 H,
dt, J=15.4 and 6.9 Hz); 13C l 154.36, 141.50, 138.76,
130.22, 129.43, 127.11 (2 carbons), 115.86, 114.55,
112.97, 33.32, 33.20, 32.65, 31.72, 30.46, 28.73, 22.53,
14.03. 55: IR (neat) 3354, 1640, 1607, 1578, 1245, 993,
964, 909, 867, 821 cm−1; 1H l 6.96 (1 H, d, J=8.2 Hz),
6.90 (1 H, d, J=2.6 Hz), 6.62 (1 H, dd, J=8.3 and 2.7
Hz), 6.54 (1 H, dt, J=15.7 and 1.1 Hz), 6.05 (1 H, tt,
J=15.6 and 6.9 Hz), 5.80 (1 H, ddt, J=17.0, 10.2 and
6.6 Hz), 4.98 (1 H, dm, J=17 and 2 Hz), 4.93 (1 H,
dm, J=10 and 1 Hz), 4.73 (1 H, br s, OH), 2.56 (2 H,
t, J=7.7 Hz), 2.19 (2 H, qd, J=7.3 and 1.7 Hz), 2.04
(2 H, qm, J=6.6 and 1 Hz), 1.6–1.3 (8 H, m), 0.95 (3
H, t, J=7.3 Hz); 13C l 153.57, 139.08, 137.74, 132.58,
132.22, 130.51, 127.27, 114.20, 113.77, 112.24, 35.31,
33.71, 32.49, 31.06, 28.94, 28.75, 22.55, 13.68; MS (m/z)
258 (M+), 229, 215, 201, 187, 175, 145, 133. The
assignment of the trans ring junction to 53 is based on
the 1H-NMR chemical shift of the benzylic methine
hydrogen at 2.12 ppm as observed in the case of 34.
The structures of 54 and 55 were assigned on the basis
[5] P.G. Sammes, Tetrahedron 32 (1976) 405.
[6] G. Quinkert, H. Stark, Angew. Chem. Int. Ed. Engl. 22 (1983)
637.
[7] J.M. Hornback, R.D. Barrows, J. Org. Chem. 47 (1982) 4285.
[8] (a) K.K. Wang, Chem. Rev. 96 (1996) 207. (b) K.K. Wang, Z.
Wang, A. Tarli, P. Gannett, J. Am. Chem. Soc. 118 (1996)
10783. (c) Y.W. Andemichael, Y. Huang, K.K. Wang, J. Org.
Chem. 58 (1993) 1651.
[9] D.A. Ben-Efraim, F. Sondheimer, Tetrahedron Lett. (1963) 313.
[10] C.M. Bowes, D.F. Montecalvo, F. Sondheimer, Tetrahedron
Lett. (1973) 3181.
[11] S. Braverman, Y. Duar, Tetrahedron Lett. (1978) 1493.
[12] (a) U.H. Brinker, I. Fleischhauer, Angew. Chem. Int. Ed. Engl.
18 (1979) 396. (b) W.H. Okamura, R. Peter, W. Reischl, J. Am.
Chem. Soc. 107 (1985) 1034. (c) Y.W. Andemichael, K.K. Wang,
J. Org. Chem. 57 (1992) 796. (d) K.K. Wang, Q. Zhang, J. Liao,
Tetrahedron Lett. 37 (1996) 4087.
[13] (a) J. Hooz, R. Mortimer, Tetrahedron Lett. (1976) 805. (b) G.
Zweifel, S.J. Backlund, J. Organomet. Chem. 156 (1978) 159. (c)
B. Wrackmeyer, C. Bihlmayer, M. Schilling, Chem. Ber. 116
(1983) 3182. (d) K.K. Wang, K.-H. Chu, J. Org. Chem. 49
(1984) 5175. (e) K.-H. Chu, K.K. Wang, J. Org. Chem. 51 (1986)
767. (f) K.K. Wang, K.-H. Chu, Y. Lin, J.-H. Chen, Tetrahe-
dron 45 (1989) 1105. (g) Z. Wang, K.K. Wang, J. Org. Chem. 59
(1994) 4738. (h) A. Tarli, K.K. Wang, J. Org. Chem. 62 (1997)
8841. For reviews of chemistry of organoborates, see: (i) M.
Vaultier, B. Carboni, in: E.W. Abel, F.G.A. Stone, G. Wilkinson
(Eds.), Comprehensive Organometallic Chemistry II. A Review
of the Literature 1982–1994, Vol. 11, Pergamon Press, Oxford,
1995, pp. 227–229. (j) E.-I. Negishi, J. Organomet. Chem. 108
(1976) 281.
1
of the H-NMR chemical shifts of the aromatic hydro-
gens at the meta position. The chemical shift of the
meta aromatic hydrogen of 54 at 7.29 ppm is essentially
identical to that of 4-[(1E)-1,6-heptadienyl]-3-
methylphenol at 7.28 ppm.
Acknowledgements
[14] (a) F. Johnson, Chem. Rev. 68 (1968) 375. (b) R.W. Hoffmann,
Chem. Rev. 89 (1989) 1841.
[15] H.C. Brown, J.A. Sinclair, J. Organomet. Chem. 131 (1977) 163.
[16] (a) R.B. Woodward, R. Hoffmann, J. Am. Chem. Soc. 87 (1965)
395. (b) W.H. Okamura. A.R. De Lera, in: B.M. Trost, I.
Fleming (Eds.), Comprehensive Organic Synthesis, Vol. 5, Perga-
mon Press, New York, 1991, p. 699.
[17] (a) S. Braverman, Y. Duar, D. Segev, Tetrahedron Lett. (1976)
3181. (b) S. Braverman, D. Segev, J. Am. Chem. Soc. 96 (1974)
1245.
The financial support of the National Science Foun-
dation (CHE9618676) is gratefully acknowledged. The
authors thank Professor Harold Shechter for helpful
discussion regarding the assignment of geometry for 30
and related adducts.
[18] H. Hopf, I. Bohm, J. Kleinschroth, Org. Syn. 60 (1981) 41.
[19] G.W. Kramer, H.C. Brown, J. Organomet. Chem. 73 (1974) 1.
[20] L. Skattebol, J. Org. Chem. 31 (1966) 2789.
References
[1] (a) W. Oppolzer, Synthesis (1978) 793. (b) W. Oppolzer, Hetero-
cycles 14 (1980) 1615. (c) R.L. Funk, K.P.C. Vollhardt, Chem.
Soc. Rev. 9 (1980) 41. (d) J.J. McCullough, Acc. Chem. Res. 13
(1980) 270. (e) P. Magnus, T. Gallagher, P. Brown, P. Pap-
palardo, Acc. Chem. Res. 17 (1984) 35. (f) A.G. Fallis, Can. J.
Chem. 62 (1984) 183. (g) J.L. Charlton, M.M. Alauddin, Tetra-
hedron 43 (1987) 2873. (h) U. Pindur, H. Erfanian-Abdoust,
[21] L. Brandsma, H.D. Verkruijsse, Synthesis of Acetylenes, Allenes
and Cumulenes, Elsevier, Amsterdam, 1981, p. 157.
[22] (a) H.C. Brown, U.R. Khire, U.S. Racherla, Tetrahedron Lett.
34 (1993) 15. (b) H.C. Brown, U.R. Khire, G. Narla, U.S.
Racherla, J. Org. Chem. 60 (1995) 544.
[23] B. Alcaide, J.I. Luengo, F. Fernandez, An. Quim. Ser. C 77
(1981) 200.
.