Published on Web 05/28/2003
Asymmetric Schmidt Reaction of Hydroxyalkyl Azides with
Ketones
Kiran Sahasrabudhe, Vijaya Gracias, Kelly Furness, Brenton T. Smith,
Christopher E. Katz, D. Srinivasa Reddy, and Jeffrey Aube´*
Contribution from the Department of Medicinal Chemistry, 1251 Wescoe Hall DriVe,
Malott Hall, Room 4070, UniVersity of Kansas, Lawrence, Kansas 66045-2506
Received February 26, 2003; E-mail: jaube@ku.edu
Abstract: An asymmetric equivalent of the Schmidt reaction permits stereocontrol in ring expansions of
symmetrical cyclohexanones. The procedure involves the reaction of chiral 1,2- and 1,3-hydroxyalkyl azides
with ketones under acid catalysis; the initial reaction affords an iminium ether that can be subsequently
opened with base. A systematic study of this reaction is reported, in which ketone substrates, chiral
hydroxyalkyl azides, and reaction conditions are varied. Selectivities as high as ca. 98:2 are possible for
the synthesis of substituted caprolactams, with up to 1,7-stereoselection involved in the overall process.
The fact that either possible migrating carbon is electronically identical provides an unusual opportunity to
study a ring-expansion reaction controlled entirely by stereoelectronic factors. The mechanism of the reaction
and the source of its stereoselectivity are also discussed.
Achiral ketones can be subjected to group-selective asym-
metric transformations leading to a variety of usefully func-
tionalized derivatives. Such reactions are of particular synthetic
utility because they provide ready access to medium-ring
compounds, many of which are only made with difficulty using
other methods.1 Much recent attention in this field has focused
on asymmetric deprotonation2 and ring-expansion processes. In
the latter, the formal insertion of a group X between the carbonyl
and one of the enantiotopic methylene groups in a ketone such
as 4-methylcyclohexanone can afford an asymmetric synthesis
of a seven-membered hetero- or carbocyclic product (eq 1).
Likewise, only a few methods for the asymmetric conversion
of ketones to lactams exist. Previously described methods that
furnish enantiomerically enriched nitrogen-insertion products
include the rearrangement of chiral oximes via the Beckmann
rearrangement7 and the photochemical rearrangement of chiral
oxaziridines.8 The paucity of methods available for the ste-
reospecific synthesis of enantiopure oximes9 limits the utility
of the Beckmann rearrangement for this purpose. Unlike oximes,
oxaziridines can be prepared easily in diastereo- and enantio-
(3) (a) Taschner, M. J.; Black, D. J. J. Am. Chem. Soc. 1988, 110, 6892-
6893. (b) Taschner, M. J.; Chen, Q.-Z. Bioorg. Med. Chem. Lett. 1991, 1,
535-538. (c) Taschner, M. J.; Black, D. J.; Chen, Q.-Z. Tetrahedron:
Asymm. 1993, 4, 1387-1390. (d) Lopp, M.; Paju, A.; Kanger, T.; Pehk, T.
Tetrahedron Lett. 1996, 37, 7583-7586. (e) Stewart, J. D.; Reed, K. W.;
Zhu, J.; Chen, G.; Kayser, M. M. J. Org. Chem. 1996, 61, 7652-7653. (f)
Bolm, C.; Luong, T. K. K.; Schlingloff, G. Synlett 1997, 1151-1152. (g)
Kayser, M. M.; Chen, G.; Stewart, J. D. J. Org. Chem. 1998, 63, 7103-
7106. (h) Stewart, J. D.; Reed, K. W.; Martinez, C. A.; Zhu, J.; Chen, G.;
Kayser, M. M. J. Am. Chem. Soc. 1998, 120, 3541-3548. (i) Stewart, J.
D. Curr. Org. Chem 1998, 2, 195-216. (j) Mihovilovic, M. D.; Chen, G.;
Wang, S.; Kyte, B.; Rochon, F.; Kayser, M. M.; Stewart, J. D. J. Org.
Chem. 2001, 66, 733-738.
Asymmetric Baeyer-Villiger processes using enzymatic reac-
tions,3 metal-promoted catalysis,4 or multistep equivalents
thereof5 have received the greatest share of attention in this
regard. In contrast, very few carbon-based versions of this
chemistry have been introduced to date.6
(4) (a) Bolm, C.; Schlingloff, G.; Weickhardt, K. Angew. Chem., Int. Ed. Engl.
1994, 33, 1848-1849. (b) Bolm, C.; Luong, T. K. K.; Schlingloff, G. Synlett
1997, 1151-1152. (c) Paneghetti, C.; Gavagnin, R.; Pinna, F.; Strukul, G.
Organometallics 1999, 18, 5057-5065.
(5) (a) Honda, T.; Kimura, N.; Tsubuki, M. Tetrahedron: Asymm. 1993, 4,
1475-1478. (b) Sugimura, T.; Fujiwara, Y.; Tai, A. Tetrahedron Lett. 1997,
38, 6019-6022.
(1) Reviews of medium rings and their synthesis: (a) Roxburgh, C. J.
Tetrahedron 1993, 49, 10 749-10 784. (b) Rousseau, G. Tetrahedron 1995,
51, 2777-2849. (c) Tochtermann, W.; Kraft, P. Synlett 1996, 1029-1035.
(d) Molander, G. A. Acc. Chem. Res. 1998, 31, 603-609. (e) Yet, L.
Tetrahedron 1999, 55, 9349-9403. (f) Maier, M. E. Angew. Chem., Int.
Ed. 2000, 39, 2073-2077. (g) Yet, L. Chem. ReV. 2000, 100, 2963-3007.
(h) Nubbemeyer, U. Top. Curr. Chem. 2001, 216, 125-196.
(2) For representative examples, see: (a) Cox, P. J.; Simpkins, N. S.
Tetrahedron: Asymm. 1991, 2, 1-26. (b) Izawa, H.; Shirai, R.; Kawasaki,
H.; Kim, H.-d.; Koga, K. Tetrahedron Lett. 1992, 30, 7221-7224. (c)
Coggins, P.; Gaur, S.; Simpkins, N. S. Tetrahedron Lett. 1995, 36, 1545-
1548. (d) Majewski, M.; Lazny, R. J. Org. Chem. 1995, 60, 5825-5830.
(e) Toriyama, M.; Sugasawa, K.; Shindo, M.; Tokutake, N.; Koga, K.
Tetrahedron Lett. 1997, 38, 567-570. (f) Lee, J. C.; Lee, K.; Cha, J. K. J.
Org. Chem. 2000, 65, 4773-4775. (g) A number of papers on this topic
have appeared in a Symposium-in-Print on lithium amide base chemistry.
O’Brien, P., Guest Ed., Tetrahedron, 2002, 58, 4657-4727.
(6) (a) Nemoto, H.; Tanabe, T.; Fukumoto, K. Tetrahedron Lett. 1994, 35,
6499-6502. (b) Nemoto, H.; Tanabe, T.; Fukimoto, K. J. Org. Chem. 1995,
60, 6785-6790.
(7) (a) Lyle, R. E.; Lyle, G. G. J. Org. Chem. 1959, 24, 1679-1684. (b) Lyle,
G. G.; Barrera, R. M. J. Org. Chem. 1964, 29, 3311-3314. (c) Toda, F.;
Akai, H. J. Org. Chem. 1990, 55, 4973-4974.
(8) (a) Lattes, A.; Oliveros, E.; Rivie`re, M.; Belzecki, C.; Mostowicz, D.;
Abramskj, W.; Piccinni-Leopardi, C.; Germain, G.; Van Meerssche, M. J.
Am. Chem. Soc. 1982, 104, 3929-3934. (b) Aube´, J.; Burgett, P. M.; Wang,
Y. Tetrahedron Lett. 1988, 29, 151-154. (c) Aube´, J. Tetrahedron Lett.
1988, 29, 4509-4512. (d) Aube´, J.; Wang, Y.; Hammond, M.; Tanol, M.;
Takusagawa, F.; Vander Velde, D. J. Am. Chem. Soc. 1990, 112, 4879-
4891. (e) Aube´, J. Chem. Soc. ReV. 1997, 26, 269-277.
(9) Adamczyk, M.; Chen, Y.-Y.; Fishpaugh, J. R.; Gebler, J. C. Tetrahedron:
Asymm. 1993, 4, 1467-1468.
9
7914
J. AM. CHEM. SOC. 2003, 125, 7914-7922
10.1021/ja0348896 CCC: $25.00 © 2003 American Chemical Society