Communication
Organic & Biomolecular Chemistry
S. R. Tella, N. V. Cozzi and C. W. Schindler, Neuropsycho-
pharmacology, 2013, 38, 552; (d) R. Kolanos, E. Solis,
F. Sakloth, L. J. De Felice and R. A. Glennon, ACS Chem.
Neurosci., 2013, 4, 1524; (e) K. Cameron, R. Kolanos,
R. Verkariya, L. De Felice and R. A. Glennon, Psychopharma-
cology, 2013, 227, 493; (f) A. J. Eshleman, K. M. Wolfrum,
M. G. Hatfield, R. A. Johnson, K. V. Murphy and
A. Janowsky, Biochem. Pharmacol., 2013, 85, 1803;
(g) S. M. Aarde, P. K. Huang, K. M. Creehan, T. J. Dickerson
and M. A. Taffe, Neuropharmacology, 2013, 71, 130;
(h) P. C. Meltzer, D. Butler, J. R. Deschamps and
B. K. Madras, J. Med. Chem., 2006, 49, 1420;
(i) C. Bouteiller, J. Becerril-Ortega, P. Marchand, O. Nicole,
L. Barre, A. Buisson and C. Perrio, Org. Biomol. Chem.,
2010, 8, 1111; ( j) M. C. Meyers, J.-L. Wang, J. A. Iera,
J.-K. Bang, T. Hara, S. Saito, G. P. Zambetti and
T. McElroy, H. A. Navarro, M. B. Gatch and M. J. Forster,
J. Med. Chem., 2009, 52, 6768; (c) P. Moran, J. Rodrigues,
I. Joekes, E. Brenelli and R. Leite, Biocatal. Biotransform.,
1994, 9, 321; (d) H. Takeda, T. Tachinami and
M. Aburatani, Tetrahedron Lett., 1989, 30, 363.
5 T. Miura, T. Bitajima, T. Fujii and M. Murakami, J. Am.
Chem. Soc., 2012, 134, 194.
6 T. Sueda, A. Kawada, Y. Urashi and N. Teno, Org. Lett.,
2013, 15, 1560.
7 (a) R. E. Evans, J. R. Zbieg, S. Zhu, W. Li and
D. W. C. Macmillan, J. Am. Chem. Soc., 2013, 135, 16074;
(b) F. Minisci and R. Galli, Tetrahedron Lett., 1964, 5, 3197.
8 Q. Jiang, B. Xu, A. Zhao, J. Jia, T. Liu and C. Guo, J. Org.
Chem., 2014, 79, 8750.
9 M. Lamani and K. R. Prabhu, Chem. – Eur. J., 2012, 18,
14638.
D. H. Appella, J. Am. Chem. Soc., 2005, 127, 6152; 10 Y. Wei, S. Lin and F. Liang, Org. Lett., 2012, 14, 4202.
(k) K. F. Foley and N. V. Cozzi, Drug Dev. Res., 2003, 60, 252; 11 S. Guha, V. Rajeshkumar, S. S. Kotha and G. Sekar, Org.
(l) D. M. Perrine, J. T. Ross, S. J. Nervi and
R. H. Zimmerman, J. Chem. Educ., 2000, 77, 1479.
Lett., 2015, 17, 406.
12 (a) W. Z. Yu, F. Chen, Y. A. Cheng and Y.-Y. Yeung, J. Org.
Chem., 2015, 80, 2815; (b) J. Zhou and Y.-Y. Yeung, Org.
Biomol. Chem., 2014, 12, 7482; (c) K. K. Rajbongshi,
D. Hazarika and P. Phukan, Tetrahedron Lett., 2015, 56,
356; (d) L. Song, S. Luo and J.-P. Cheng, Org. Lett., 2013, 15,
5702; (e) Y. Wei, S. Lin, H. Xue, F. Liang and B. Zhao, Org.
Lett., 2012, 14, 712; (f) A. Alix, C. Lalli, P. Retailleau and
G. Masson, J. Am. Chem. Soc., 2012, 134, 10389; (g) J. Chen,
S. Chng, L. Zhou and Y.-Y. Yeung, Org. Lett., 2011, 13, 6456;
(h) L. Zhou, J. Chen, J. Zhou and Y.-Y. Yeung, Org. Lett.,
2011, 13, 5804; (i) Y. Cai, X. Liu, Y. Hui, J. Jiang, W. Wang,
W. Chen, L. Lin and X. Feng, Angew. Chem., Int. Ed., 2010,
49, 6160; ( j) L. Zhou, C. K. Tan, X. Jiang, F. Chen and
Y.-Y. Yeung, J. Am. Chem. Soc., 2010, 132, 15474;
(k) A. Podgorsek, S. Stavber, M. Zupan and J. Iskra, Tetrahe-
dron, 2009, 65, 4429.
2 (a) T. Sehl, Z. Maugeri and D. Rother, J. Mol. Catal. B:
Enzym., 2015, 114, 65; (b) H. Ooka, N. Arai, K. Azuma,
N. Kurono and T. Ohkuma, J. Org. Chem., 2008, 73, 9084;
(c) G. Shang, D. Liu, S. E. Allen, Q. Yang and X. Zhang,
Chem. – Eur. J., 2007, 13, 7780; (d) F. D. Klingler, Acc. Chem.
Res., 2007, 40, 1367; (e) A. Lei, S. Wu, M. He and X. Zhang,
J. Am. Chem. Soc., 2004, 126, 1626; (f) D. J. Kim and
B. T. Cho, Bull. Korean Chem. Soc., 2003, 24, 1641;
(g) R. D. Pace and G. W. Kabalka, J. Org. Chem., 1995, 60,
4838; (h) B. T. Cho and Y. S. Chun, Tetrahedron: Asymmetry,
1992, 3, 341; (i) H. Takahashi, S. Sakuraba, H. Takeda and
K. Achiwa, J. Am. Chem. Soc., 1990, 112, 5876;
( j) M. Kitamura, T. Ohkuma, S. Inoue, N. Sayo,
H. Kumobayashi, S. Akutagawa, T. Ohta, H. Takaya and
R. Noyori, J. Am. Chem. Soc., 1988, 110, 629; (k) M. Fujita
and T. Hiyama, J. Am. Chem. Soc., 1984, 106, 4629.
13 Reaction needs a longer time (more than 24h) when
carried out at room temperature or 50 °C.
3 (a) L. V. Frolova, N. M. Evdokimov, K. Hayden, I. Malik,
S. Rogelj, A. Kornienko and I. V. Magedov, Org. Lett., 2011, 14 Styrene (1a) upon stirring with 1.0 equiv. of NBS at room
13, 1118; (b) M. G. Unthank, N. Hussain and
V. K. Aggarwal, Angew. Chem., Int. Ed., 2006, 45, 7066;
(c) D. E. Frantz, L. Morency, A. Soheili, J. A. Murry,
E. J. J. Grabowski and R. D. Tillyer, Org. Lett., 2004, 6, 843;
(d) I. Adam, D. Orain and P. Meier, Synlett, 2004, 2031;
(e) P. Langer and A. Bodtke, Tetrahedron Lett., 2003, 44,
temperature in water for 30 min gave bromohydrin (5) in
89% yield, which, upon heating with 1.0 equiv. of NBS at
80 °C for 2 h, gave phenacyl bromide (7) in 83% yield.
When styrene (1a) was heated with 2.0 equiv. of NBS in
water for 2 h, it furnished the phenacyl bromide (7) in 80%
yield.
5965; (f) G. T. Newbold and F. S. Spring, J. Chem. Soc., 15 (a) Y. Wei, F. Liang and X. Zhang, Org. Lett., 2013, 15, 5186;
1947, 373.
(b) Y. Wei, S. Lin, F. Liang and J. Zhang, Org. Lett., 2013, 15,
4 (a) M. Suzuki, J. R. Deschamps, A. E. Jacobson and
852.
K. C. Rice, Chirality, 2015, 27, 287; (b) F. I. Carrol, 16 Formation of a small amount of expected product was con-
B. E. Blough, P. Abraham, A. C. Mills, J. A. Holleman,
S. A. Wolchenhauer, A. M. Decker, A. K. Landavazo,
firmed by mass spectrometry of the crude reaction mixture
but was untraceable on TLC.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2015