ChemComm
Communication
We acknowledge the Max-Planck Society and the Swiss National
Science Foundation (200020-117889) as well as a Korber Prize
(to P. H. Seeberger) for generous financial support. M.H. thanks
the Max-Planck Society for a Minerva postdoctoral fellowship. We
thank Dr I. Vilotijevic, Dr C. Rademacher, Dr S. G. Parameswarappa,
Dr J. Hudon, Dr C. Anish, Dr C. L. Pereira and Mr H. S. Hahm for
their help in editing this paper. Cover image courtesy of scientific
illustrator, Melanie Burger (melanie.burger@mail.utoronto.ca).
Notes and references
1 P. J. Brennan and H. Nikaido, Annu. Rev. Biochem., 1995, 64, 29–63.
2 G. S. Besra, K. H. Khoo, M. R. Mcneil, A. Dell, H. R. Morris and
P. J. Brennan, Biochemistry, 1995, 34, 4257–4266.
3 L. B. Shi, S. Berg, A. Lee, J. S. Spencer, J. Zhang, V. Vissa,
M. R. McNeil, K. H. Khoo and D. Chatterjee, J. Biol. Chem., 2006,
281, 19512–19526.
4 V. Briken, S. A. Porcelli, G. S. Besra and L. Kremer, Mol. Microbiol.,
2004, 53, 391–403.
Scheme 5 Automated synthesis of branched hexasaccharide 4. Reagents and con-
ditions: (a) 7, NIS/TfOH, ꢀ40 1C to ꢀ20 1C, repeated twice; (b) 20% piperidine in DMF;
(c) 11, NIS/TfOH, ꢀ40 1C to ꢀ20 1C, repeated twice; (d) 7, NIS/TfOH, ꢀ40 1C to ꢀ20 1C,
repeated four times; (e) NaOMe in MeOH; (f) Pd/C, H2, MeOH/H2O/EtOAc/AcOH.
¨
5 J. A. Zhang, A. G. Amin, A. Holemann, P. H. Seeberger and
D. Chatterjee, Bioorg. Med. Chem., 2010, 18, 7121–7131.
6 S. Khasnobis, J. Zhang, S. K. Angala, A. G. Amin, M. R. McNeil,
D. C. Crick and D. Chatterjee, Chem. Biol., 2006, 13, 787–795.
7 J. Zhang, S. K. Angala, P. K. Pramanik, K. Li, D. C. Crick, A. Liav,
A. Jozwiak, E. Swiezewska, M. Jackson and D. Chatterjee, ACS Chem.
Biol., 2011, 6, 819–828.
8 J. D. Ayers, T. L. Lowary, C. B. Morehouse and G. S. Besra, Bioorg.
Med. Chem. Lett., 1998, 8, 437–442.
9 C. Rademacher, G. K. Shoemaker, H. S. Kim, R. B. Zheng, H. Taha,
C. Liu, R. C. Nacario, D. C. Schriemer, J. S. Klassen, T. Peters and
T. L. Lowary, J. Am. Chem. Soc., 2007, 129, 10489–10502.
10 S. Fukui, T. Feizi, C. Galustian, A. M. Lawson and W. G. Chai, Nat.
Biotechnol., 2002, 20, 1011–1017.
11 F. W. D’Souza, J. D. Ayers, P. R. McCarren and T. L. Lowary, J. Am.
Chem. Soc., 2000, 122, 1251–1260.
12 F. W. D’Souza, P. E. Cheshev, J. D. Ayers and T. L. Lowary, J. Org.
Chem., 1998, 63, 9037–9044.
13 R. R. Gadikota, C. S. Callam, T. Wagner, B. Del Fraino and
T. L. Lowary, J. Am. Chem. Soc., 2003, 125, 4155–4165.
14 F. W. D’Souza and T. L. Lowary, Org. Lett., 2000, 2, 1493–1495.
15 A. Ishiwata, H. Akao and Y. Ito, Org. Lett., 2006, 8, 5525–5528.
16 K. Marotte, S. Sanchez, T. Bamhaoud and J. Prandi, Eur. J. Org.
Chem., 2003, 3587–3598.
Table 1 Time required for the synthesis of oligosaccharides 1–4a
Steps
Compound
I
II III IV
V
Total time (h) Overall yield (%)
1
2
3
4
6
16
8
6
6
6
6
6
6
3
3
16
16
16
16
3
3
3
3
37
47
36
42
85
65
78
63
14
a
Time given in hours for all steps, (I) automated synthesis (glycosylation–
deprotection); (II) cleavage from resin (NaOMe); (III) first purification
step (HPLC or silica pad); (IV) global deprotection (Pd/C, H2); (V) final
purification (Sep-Pak, optional).
7 and 11 (Scheme 5). The automated synthesis of hexasaccharide
13 required about 14 hours. Partially protected hexasaccharide
13 was purified by passing the crude mixture over a silica pad.
Hydrogenolysis provided the amine functionalized hexasaccharide
4 in 63% overall yield based on resin loading.
17 Y. J. Lee, K. Lee, E. H. Jung, H. B. Jeon and K. S. Kim, Org. Lett., 2005,
7, 3263–3266.
18 M. Joe, Y. Bai, R. C. Nacario and T. L. Lowary, J. Am. Chem. Soc.,
2007, 129, 9885–9901.
19 A. Ishiwata and Y. Ito, J. Am. Chem. Soc., 2011, 133, 2275–2291.
20 O. J. Plante, E. R. Palmacci and P. H. Seeberger, Science, 2001, 291,
1523–1527.
Automated solid phase oligosaccharide synthesis drastically
reduces the overall synthesis time from the building block to 21 K. R. Love and P. H. Seeberger, Angew. Chem., Int. Ed., 2004, 43,
602–605.
the final compound. Table 1 provides an overview of the time
required for the synthesis of oligosaccharides 1–4. The overall
22 D. B. Werz, B. Castagner and P. H. Seeberger, J. Am. Chem. Soc.,
2007, 129, 2770–2771.
¨
time to reach branched hexamer 4 was slightly shorter than 23 M. T. C. Walvoort, H. van den Elst, O. J. Plante, L. Krock,
P. H. Seeberger, H. S. Overkleeft, G. A. van der Marel and J. D. C.
that for hexamer 2 owing to the simplified purification protocol
(Table 1, step III).
´
Codee, Angew. Chem., Int. Ed., 2012, 51, 4393–4396.
24 M. T. C. Walvoort, A. G. Volbeda, N. R. M. Reintjens, H. van den Elst,
´
In conclusion, linear and branched conjugation-ready oli-
goarabinofuranosides 1–4 were assembled via automated solid
phase synthesis. This robust and reproducible route constitutes
O. J. Plante, H. S. Overkleeft, G. A. van der Marel and J. D. C. Codee,
Org. Lett., 2012, 14, 3776–3779.
¨
¨
25 L. Krock, D. Esposito, B. Castagner, C. C. Wang, P. Bindschadler and
P. H. Seeberger, Chem. Sci., 2012, 3, 1617–1622.
the first automated solid phase synthesis of oligofuranosides. 26 D. Esposito, M. Hurevich, B. Castagner, C. C. Wang and
P. H. Seeberger, Beilstein J. Org. Chem., 2012, 8, 1601–1609.
27 C. S. Callam and T. L. Lowary, J. Chem. Educ., 2001, 78, 73–74.
28 D. J. Hou, H. A. Taha and T. L. Lowary, J. Am. Chem. Soc., 2009, 131,
This method will provide straightforward access to a large
number of different arabinogalactan fragments for biological
studies.
12937–12948.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 4453--4455 4455