J. Am. Chem. Soc. 1999, 121, 6501-6502
6501
Scheme 1a
Stereocontrolled Total Synthesis of (+)-K252a
Yoshihisa Kobayashi, Teppei Fujimoto, and Tohru Fukuyama*
Graduate School of Pharmaceutical Sciences
The UniVersity of Tokyo, CREST
The Japan Science and Technology Corporation (JST)
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
ReceiVed March 22, 1999
The structurally related indolocarbazole alkaloids (+)-K252a1,2
(1) and (+)-staurosporine3 (2) have attracted considerable attention
due to the unique asymmetrical structure of the cycloglycoside
moieties as well as the strong PKC inhibitory activity. Many
efforts have been directed toward the regioselective synthesis of
the N-monoprotected aglycon moiety of K252a.4 While Wood
and co-workers have recently completed an efficient total
synthesis of (+)-K252a,5 they failed to solve the regiochemical
problem of the cycloglycosidation, resulting in the formation of
a 2:1 mixture of the desired product 3 and its regioisomer 4. In
a Reagents and yields: (a) allyl bromide, K2CO3, DMF, 23 °C, 100
min, 99%; (b) (i) NBS, CCl4, 23 °C, 90 min, 80%; (ii) NaH, MeCN, 23
°C, 10 min; 8, 23 °C, 30 min, 97%; (c) (i) Pd(PPh3)4, Ph3P, pyrrolidine,
CH2Cl2, 23 °C, 1 h; (ii) WSCD, tryptamine, CH2Cl2, 23 °C, 15 min,
72% (2 steps); (iii) DDQ (2.2 equiv), THF/H2O (9:1), 0 °C, 30 min, 93%;
(iv) 2,6-lutidine (2 equiv), DMAP (0.2 equiv), Ac2O, 60 °C, 8 h, 78%.
Scheme 2a
their total synthesis of (+)-staurosporine, Danishefsky and co-
workers also obtained a 1:1 mixture of the regioisomeric
intermediates.6 Herein we report a completely stereocontrolled
total synthesis of (+)-K252a, which is applicable to the synthesis
of a range of indolocarbazolyl glycosides.
Regiospecific bromination7 of indole 6, prepared by allylation
of indole-3-acetic acid (5), was performed by treatment with NBS
to give 2-bromoindole 7 (Scheme 1). N-Glycosidation8 of the
indole 7 was carried out by deprotonation with sodium hydride,
followed by addition of readily available 1-chloro-2-deoxy-3,5-
di-O-p-toluoyl-R-D-erythro-pentofuranose9 (8) to give â-N-gly-
a Reagents and yields: (a) DBU (0.1 equiv), MS 4 Å, THF, 60 °C,
2.5 h, 92%; (b) i-Pr2NEt, hν, CH2Cl2 (2.8 × 10-2 M), 23 °C, 5 h, 96%;
(c) (i) KOH, H2O/MeOH/THF, 23 °C, 45 min, 97%; (ii) I2, Ph3P,
imidazole, THF, 23 °C, 1 h, 82%; (iii) DBU, THF, 80 °C.
(1) (+)-K252a was isolated independently by two Japanese groups. (a)
Sezaki, M.; Sasaki, T.; Nakazawa, T.; Takeda, U.; Iwata, M.; Watanabe, T.;
Koyama, M.; Kai, F.; Shomura, T.; Kojima, M. J. Antibiot. 1985, 38, 1439.
(b) Kase, H.; Iwahashi, K.; Matsuda, Y. J. Antibiot. 1986, 39, 1059.
(2) For structure elucidation of (+)-K252a, see: (a) Nakanishi, S.; Matsuda,
Y.; Iwahashi, K.; Kase, H. J. Antibiot. 1986, 39, 1066. (b) Yasuzawa, T.;
Iida, T.; Yoshida, M.; Hirayama, M.; Takahashi, M.; Shirahata, K.; Sano, H.
J. Antibiot. 1986, 39, 1072.
(3) For isolation and structure elucidation of (+)-staurosporine, see: (a)
Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchiya, H.;
Takahashi, Y.; Masuma, R. J. Antibiot. 1977, 30, 275. (b) Furusaki, A.;
Hashiba, N.; Matsumoto, T.; Hirano, A.; Iwai, Y.; Omura, S. J. Chem. Soc.,
Chem. Commun. 1978, 800. (c) Furusaki, A.; Hashiba, N.; Matsumoto, T.;
Hirano, A.; Iwai, Y.; Omura, S. Bull. Chem. Soc. Jpn. 1982, 55, 3681.
(4) (a) Magnus, P. D.; Sear, N. L. Tetrahedron 1984, 40, 2797. (b) Bru¨ning,
J.; Hache, T.; Winterfeldt, E. Synthesis 1994, 25. (c) Kobayashi, Y.; Fukuyama,
T. J. Heterocycl. Chem. 1998, 35, 1043.
coside 9 as the sole product. After deprotection of the allyl ester
9, the acid which resulted was condensed with tryptamine under
conventional conditions to give amide 10. Regioselective oxida-
tion of the more reactive indole of 10 with 2 equiv of DDQ in
aqueous THF afforded the ketone 11 exclusively.10 For the ensuing
cyclization, the ketone and the amide in 11 were both activated
by acetylation of the indole and amide nitrogens to give diacetyl
bisindole.11
Upon treatment with a catalytic amount of DBU and molecular
sieves, 12 underwent smooth cyclization to give lactam 13
(Scheme 2).12 A nonoxidative photocyclization13 was performed
by exposing lactam 13 to sunlight14 in the presence of diisopro-
(5) (a) Wood, J. L.; Stoltz, B. M.; Dietrich, H.-J. J. Am. Chem. Soc. 1995,
117, 10413. (b) Wood, J. L.; Stoltz, B. M.; Dietrich, H.-J.; Pflum, D. A.;
Petsch, D. T. J. Am. Chem. Soc. 1997, 119, 9641.
(6) (a) Link, J. L.; Raghavan, S.; Danishefsky, S. J. J. Am. Chem. Soc.
1995, 117, 552. (b) Link, J. L.; Raghavan, S.; Gallant, M.; Danishefsky, S.
J.; Chou, T. C.; Ballas, L. M. J. Am. Chem. Soc. 1996, 118, 2825.
(7) Zhang, P.; Liu, R.; Cook, J. M. Tetrahedron Lett. 1995, 36, 3103.
(8) Girgis, N. S.; Cottam, H. B.; Robins, R. K. J. Heterocycl. Chem. 1988,
25, 361.
(10) Oikawa, Y.; Yonemitsu, O. J. Org. Chem. 1977, 42, 1213.
(11) Sarstedt, B.; Winterfeldt, E. Heterocycles 1983, 20, 469.
(12) Lactam 13 exists as a 1:1 mixture of atropisomers.
(13) For an example of a nonoxidative photochemical synthesis of
phenanthrenes, see: Cava, M. P.; Mitchell, M. J.; Havlicek, S. C.; Lindert,
A.; Spangler, R. J. J. Org. Chem. 1970, 35, 175.
(9) Hoffer, M. Chem. Ber. 1960, 93, 2777.
(14) A 500-W halogen lamp can be used in laboratories.
10.1021/ja990909l CCC: $18.00 © 1999 American Chemical Society
Published on Web 06/25/1999