10.1002/anie.202107619
Angewandte Chemie International Edition
RESEARCH ARTICLE
[12] Q. Sun, M. Huang, Y. Wei, Acta Pharm. Sin. B 2020, 11, 632-650.
[13] D. G. Fujimori, Curr. Opin. Chem. Biol. 2013, 17, 597-604.
[14] M. V. C. Greenberg, D. Bourc'his, Nat. Rev. Mol. Cell. Biol. 2019, 20,
590-607.
Biotechnologie‘, grant numbers 34-EFRE-0300096 and 34-
EFRE-0300097, as well as the Heinrich Heine University
Düsseldorf and the Forschungszentrum Jülich GmbH for their
ongoing support. Open access funding enabled and organized by
Projekt DEAL.
[15] Y. Dor, H. Cedar, Lancet 2018, 392, 777-786.
[16] M. Zhang, J.-Y. Xu, H. Hu, B.-C. Ye, M. Tan, Proteomics 2018, 18, 1-13.
[17] D. K. Liscombe, G. V. Louie, J. P. Noel, Nat. Prod. Rep. 2012, 29, 1238-
1250.
Keywords: Methyl transferase• biocatalysis• SAM recycling •
[18] J. Zhang, J. P. Klinman, J. Am. Chem. Soc. 2016, 138, 9158-9165.
[19] A.-W. Struck, M. L. Thompson, L. S. Wong, J. Micklefield,
ChemBioChem 2012, 13, 2642-2655.
physostigmine • natural products
[1]
[2]
A. Fryszkowska, P. N. Devine, Curr. Opin. Chem. Biol. 2020, 55, 151-
160.
[20] a) S. Mordhorst, J. Siegrist, M. Müller, M. Richter, J. N. Andexer, Angew.
Chem. Int. Ed. 2017, 56, 4037-4041; b) D. Popadic, D. Mhaindarkar, M.
H. N. D. Thai, H. C. Hailes, S. Mordhorst, J. N. Andexer, RSC Chem. Biol.
2021, 2, 883-891.
a) S. D. Dreher, React. Chem. Eng. 2019, 4, 1530-1535; b) S. Wu, R.
Snajdrova, J. C. Moore, K. Baldenius, U. T. Bornscheuer, Angew. Chem.
Int. Ed. Engl. 2021, 60, 88-119; C) E. Romero, B. S. Jones, B. N. Hogg,
A. Rue Casamajo, M. A. Hayes, S. L. Flitsch, N. J. Turner, C. Schnepel,
Angew. Chem. Int. Ed. Engl. 2021, 60, 16824-16855; d) A.S. Klein,
T.Classen, J.Pietruszka in Pharmaceutical Biocatalysis – Fundamentals,
Enzyme Inhibitors, and Enzymes in Health and Diseases (Ed.: P.
Grunwald), Jenny Stanford Publishing, Singapore, 2019, pp. 713-738.
S. Mordhorst, J. N. Andexer, Nat. Prod. Rep. 2020, 37, 1316-1333.
J. Micklefield, Nat. Catal. 2019, 2, 644-645.
[21] C. Liao, F. P. Seebeck, Nat. Catal. 2019, 2, 696-701.
[22] C. Markl, W. P. Clafshenkel, M. I. Attia, S. Sethi, P. A. Witt-Enderby, D.
P. Zlotos, Arch. Pharm. Chem. Life Sci. 2011, 344, 666-674.
[23] K. Hsiao, H. Zegzouti, S. A. Goueli, Epigenomics 2015, 8, 321-339.
[24] M. L. Connolly, J. Am. Chem. Soc. 1985, 107.5, 1118-1124.
[25] B. David, P. Schneider, P. Schäfer, J. Pietruszka, H. Gohlke, J. Enz.
Inhib. Med. Chem. 2021, 36, 491-496.
[3]
[4]
[5]
[6]
[26] G. L. Ellman, K.D. Courtney, V. Andres Jr., R.M. Feather-Stone, Biochem.
Pharmacol. 1961, 7, 88–95.
L. E. Zetzsche, A. R. H. Narayan, Nat. Rev. Chem. 2020, 4, 334-346.
Recent review: a) A. Roy, A. Maity, S. S. Mk, R. Giri, A. Bisai, Arkivoc
2020, i, 437-471; selected publications on physostigmine (1), phenserine
(2) (a synthetic drug), esermethol (3), physosvenine (4), and related
alkaloids: b) G. E.-S. Batiha, L. M. Alkazmi, E. H. Nadwa, E. K. Rashwan,
A. M. Beshbishy, H. Shaheen, L. Wasef, J. Drug Deliv. Ther. 2020, 10,
187-190; c) J. Liu, T. Ng, Z. Rui, O. Ad, W. Zhang, Angew. Chem. Int.
Ed. 2014, 53, 136-139; d) N. H. Greig, X.-F. Pei, T. T. Soncrant, D. K.
Ingram, A. Brossi, Med. Res. Rev.1995,15, 3-31; e) Z.-J. Zhan, H.-L.
Bian, J.-W. Wang, W.-G. Shan, Bioorg. Med. Chem. Lett. 2010, 20, 1532-
1534; f) Shinada, F. Narumi, Y. Osada, K. Matsumoto, T. Yoshida, K.
Higuchi, T. Kawasaki, H. Tanaka, M. Satoh, Bioorg. Med. Chem. 2012,
20, 4901-4914; g) J. C. Yi, C. Liu, L. X. Dai, S. L. You, Chem. Asian. J.
2017, 12, 2975-2979; selected publications on flustramine (5) and related
prenylated compounds: h) J. S. Carié, C. Christophersen, J. Am. Chem.
Soc. 1979, 101, 4012-4013; i) J. S. Carié, C. Christophersen, J. Org.
Chem. 1980, 45, 1586-1589; j) T. Lindel, L. Bräuchle, G. Golz, P. Böhrer,
Org. Lett, 2007, 9, 283-286; k) C. Bunders, J. Cavanagh, C. Melander,
Org. Biomol Chem. 2011, 9, 5476-5481; l) S. K. Adla, F. Sasse, G. Kelter,
H.-H. Fiebig, T. Lindel, Org. Biomol. Chem. 2013, 11, 6119-6130; m) J.
M. Müller, C. B. W. Stark, Angew. Chem. Int. Ed. 2016, 55, 4798-4802;
n) H.-F. Tu, X. Zhang, C. Zheng, M. Zhu, S.-L. You, Nat. Catal. 2018, 1,
601-608; diketopiperazine-based natural products: o) A. D. Borthwick,
Chem. Rev. 2012, 112, 3641-3716; p) H. Wang, S. H. Reisman, Angew.
Chem. Int. Ed. 2014, 53, 6206 –6210; q) H. Li, Y. Qiu, C. Guo, M. Han,
Y. Zhou, Y. Feng, S. Luo, Y. Tong, G. Zheng, S. Zhu, Chem. Commun.
2019, 55, 8390-8393.
[7]
[8]
a) H. Schönherr, T. Cernak, Angew. Chem. Int. Ed. 2013, 52, 12256-
12267; b) C. Sommer-Kamann, A. Fries, S. Mordhorst, J. N. Andexer, M.
Müller, Angew. Chem. Int. Ed. 2017, 56, 4033-4036.
Selected examples (see also ref. 6): a) D. Liu, G. Zhao, L. Xiang, Eur. J.
Org. Chem. 2010, 3975-3984; b) S. Lucarini, F. Bartoccini, F. Battistoni,
G. Diamantini, G. Piersanti, M. Righi, G. Spadoni, Org. Lett. 2010, 12,
3844-3847.
[9]
Selected examples (see also ref. 6): a) M. Kawahara, A. Nishida, M.
Nakagawa, Org. Lett. 2000, 2, 675-678; b) T. Bui, S. Syed, C. F. Barbas
III, J. Am. Chem. Soc. 2009, 131, 8758–8759; c) Y. Zhang, W. Wang,
Catal. Sci. Technol. 2012, 2, 42-53; d) Y. Li, Z. Ding, A. Lei, W. Kong,
Org. Chem. Front. 2019, 6, 3305-3309.
[10] a) J. Zhang, C. Martin, M. A. Shifflet, P. Salmon, T. Brix, R. Greasham,
B. Buckland, M. Chartrain, Appl. Microbiol. Biotechnol. 1996, 44, 568-
575; for a recent mutasynthetic approach, see: b) L. Winand, P.
Schneider, S. Kruth, N.-J. Greven, W. Hiller, M. Kaiser, J. Pietruszka, M.
Nett, Org. Lett. DOI: 10.1021/acs.orglett.1c02374.
[11] M. R. Bennett, S. A. Shepherd, V. A. Cronin, J. Micklefield, Curr. Opin.
Chem. Biol. 2017, 37, 97-106.
6
This article is protected by copyright. All rights reserved.