in combination with a phosphine ligand.11 However, although
single base-free systems are known,12,13 harsh reaction
conditions (temperature >100 °C) and activation by in-
organic bases is crucial for high catalytic activity.
Fujita’s dicationic complex [Cp*Ir(NH3)3][I]2 (1) (Scheme1)
is highly active in the alkylation of aqueous NH3 and amines
in water.12c On the other hand, DFT calculations of Eisenstein
and Crabtree suggest that 3 forms from [Cp*IrCl2]2 and
K2CO3.
been used in catalysis.19 Their application for catalytic
N-alkylation of amines with alcohols has no precedent.
Cp*Àiridium complexes 2aÀe (Cp* = η5-C5Me5, cf.
Scheme 2) were synthesized in CH3CN from [Cp*IrCl2]2,
the corresponding amino acid, and K2CO3 in good yields
(70À80%).16 Remarkably, they are stable under air at
ambient temperature for months. While those complexes
with achiral κ2-N,O-glycinato ligands (2a16b and 2c) form
enantiomers, the metal as well as the N-atom of the
sarcosinato ligand in [Cp*Ir(Sar)Cl] (2b)15c are chiral.
Scheme 1. Aminoacidato Ligands in the Cp*ÀIridium-
Scheme 2. Preparation and Structure of 2aÀea
Catalyzed Alkylation of Amines with Alcohols
The κ2-carbonato ligand is supposed to stabilize the
newly generated 16-electron iridiumÀalkoxy intermediate
as an electron donor.14 Thus, we envisaged a compromise of
both approaches, i.e., aminoacidates, to be suitable ligands
leading to high catalytic activity paired with high selectivity.
Cp*Ir(III) half-sandwich complexes of type 2 bearing either
R-,15,16 β-aminoacidato,17 or even peptide-derived ligands18
have been known for decades, but they have only scarcely
a Solid-state (X-ray) molecular structure of 2a; ellipsoids drawn at the
50% probability level. Two independent molecules are present in the
unit cell. Hydrogen atoms omitted for clarity.20
Thus, 2b forms diastereomers (ratio 4:1),15a such as
[Cp*Ir(Val)Cl] (2d)16b and [Cp*Ir(Pro)Cl] (2e),15i which
bearstereogeniccentersatthemetal and in the backboneof
the chiral amino acids (S)-valine and (S)-proline (1:1 and 6:1,
respectively). Crystals of 2a suitable for X-ray analysis were
grown from CH2Cl2 layered with n-pentane (Scheme 2). The
geometry at the metal is that of a three-legged piano stool. The
two angles ClÀIrÀO and ClÀIrÀN are slightly smaller than
the ideal value of 90°, and the NÀIrÀO angle is even below
that (ca. 78°), similar to the analogous complex of valine.16a
In toluene at 140 °C the reaction of 1-octylamine and
1-hexanol catalyzed by [Cp*Ir(Gly)Cl] (2a) (2 mol %) gave
besides the desired hexyloctylamine (4) an almost equiva-
lent amount of dioctylamine (5) resulting from amine
homocoupling (Table 1, a),21 accompanied by small
amounts of the tertiary amines 6 and 7 (ratio 45:44:4:7).
At 95 °C the selectivity for the desired amine 4 increased
to >90%, and only minor amounts of byproducts 5À7
formed (Table 1, bÀd).22
(8) (a) Fujita, K.-i.; Enoki, Y.; Yamaguchi, R. Tetrahedron 2008, 64,
1943–1954. (b) Fujita, K.-i.; Yamaguchi, R. Synlett 2005, 2005, 560–571.
(c) Fujita, K.-i.; Fujii, T.; Yamaguchi, R. Org. Lett. 2004, 6, 3525–3528.
(d) Fujita, K.-i.; Li, Z.; Ozeki, N.; Yamaguchi, R. Tetrahedron Lett.
2003, 44, 2687–2690. (e) Fujita, K.-i.; Yamamoto, K.; Yamaguchi, R.
Org. Lett. 2002, 4, 2691–2694.
(9) Gnanamgari, D.; Sauer, E. L. O.; Schley, N. D.; Butler, C.;
Incarvito, C. D.; Crabtree, R. H. Organometallics 2008, 28, 321–325.
ꢁ
(10) Prades, A.; Corberan, R.; Poyatos, M.; Peris, E. Chem.;Eur. J.
2008, 14, 11474–11479.
(11) (a) Blank, B.; Michlik, S.; Kempe, R. Chem.;Eur. J. 2009, 15,
3790–3799. (b) Sakaguchi, S.; Yamaga, T.; Ishii, Y. J. Org. Chem. 2001,
66, 4710–4712.
(12) (a) Saidi, O.; Blacker, A. J.; Lamb, G. W.; Marsden, S. P.;
Taylor, J. E.; Williams, J. M. J. Org. Process Res. Dev. 2010, 14, 1046–
1049. (b) Kawahara, R.; Fujita, K.-i.; Yamaguchi, R. Adv. Synth. Catal.
2011, 353, 1161–1168. (c) Kawahara, R.; Fujita, K.-i.; Yamaguchi, R.
J. Am. Chem. Soc. 2010, 132, 15108–15111.
(13) Zhang, W.; Dong, X.; Zhao, W. Org. Lett. 2011, 13, 5386–5389.
(14) Balcells, D.; Nova, A.; Clot, E.; Gnanamgari, D.; Crabtree,
R. H.; Eisenstein, O. Organometallics 2008, 27, 2529–2535.
€
(15) (a) Koch, D.; Sunkel, K.; Beck, W. Z. Anorg. Allg. Chem. 2003,
ꢁ
629, 1322–1328. (b) Carmona, D.; Lamata, M. P.; Viguri, F.; San Jose,
At 75 °C, conversion dropped significantly (Table 1, e),
and not even an excess of 1-hexanol prevented the forma-
tion of small amounts of byproducts at 95 °C (Table 1, f).
Remarkably, 2a is quite soluble in water, and here its
~
E.; Mendoza, A.; Lahoz, F. J.; Garcıa-Orduna, P.; Atencio, R.; Oro,
´
L. A. J. Organomet. Chem. 2012, 717, 152–163. (c) Jimineo, M. L.;
Elguero J. Magn. Reson. 1996, 34, 42–46. (d) Poth, T.; Paulus, H.; Elias,
€
H.; Ducker-Benfer, C.; van Eldik, R. Eur. J. Inorg. Chem. 2001, 1361–
1369. (e) Carmona, D.; Vega, C.; Lahoz, F. J.; Atencio, R.; Oro, L. A.
Organometallics 2000, 19, 2273–2280. (f) Carmona, D.; Lahoz, F. J.;
ꢂ
Atencio, R.; Oro, L. A.; Lamata, M. P.; San Jose, E. Tetrahedron:
Asymmetry 1993, 4, 1425–1428. (g) Grotjahn, D. B.; Groy, T. L.
Organometallics 1995, 14, 3669–3682. (h) Grotjahn, D. B.; Groy, T. L.
J. Am. Chem. Soc. 1994, 116, 6969–6970. (i) Carmona, D.; Mendoza, A.;
Lahoz, F. J.; Oro, L. A.; Lamata, M. P.; San Jose, E. J. Organomet.
Chem. 1990, 396, C17–C21.
(16) (a) Grotjahn, D. B.; Joubran, C.; Hubbard, J. L. Organometallics
(19) Carmona, D.; Lahoz, F. J.; Atencio, R.; Oro, L. A.; Lamata,
ꢁ
ꢁ
M. P.; Viguri, F.; San Jose, E.; Vega, C.; Reyes, J.; Joo, F.; Katho, A.
ꢁ
ꢁ
Chem.;Eur. J. 1999, 5, 1544–1564.
ꢂ
(20) Selected bond lengths (A) and angles (deg): IrÀCl 2.4177(6)/
2.4143(7), IrÀO 2.0992(18)/2.0998(18), IrÀN 2.120(2)/2.129(2), ClÀIrÀO
86.96(5)/85.25(6), ClÀIrÀN 83.95(6)/85.02(6), OÀIrÀN 78.48(7)/78.39(8).
(21) Saidi, O.; Blacker, A. J.; Farah, M. M.; Marsden, S. P.; Williams,
J. M. J. Angew. Chem., Int. Ed. 2009, 48, 7375–7378.
(22) The attempted alkylation of various NH3 equivalents in neat
benzyl alcohol (2 mol % 2a, 140 °C, 24 h) yielded mostly tertiary amines
(NH4BF4: 49% conv, 77% Bn3N; NH4OAc: 81% conv, 100% Bn3N;
urea: 69% conv, 26% Bn2NH, 40% Bn3N).
€
1996, 15, 1230–1235. (b) Kramer, R.; Polborn, K.; Wanjek, H.; Zahn, I.;
Beck, W. Chem. Ber. 1990, 123, 767–778.
€
(17) Koch, D.; Hoffmuller, W.; Polborn, K.; Beck, W. Z. Naturforsch.
2001, 56b, 403–410.
€
(18) Hoffmuller, W.; Dialer, H.; Beck, W. Z. Naturforsch. 2005, 60b,
1278–1286.
Org. Lett., Vol. 15, No. 2, 2013
267