Table 6 Comparison of the second-order rate constants of the reactions
of malononitrile anion 2h with Michael acceptors 1a and 1b and the
Notes and references
benzhydrylium ion 1h in different solvents at 20 ◦
k2/L mol−1 s−1
C
1 (a) H. Mayr and A. R. Ofial, Pure Appl. Chem., 2005, 77, 1807–1821;
(b) H. Mayr and A. R. Ofial, in Carbocation Chemistry, ed. G. A. Olah
and G. K. S. Prakash, Wiley, Hoboken (N.J.), 2004, ch. 13, pp. 331–358;
(c) A. R. Ofial and H. Mayr, Macromol. Symp., 2004, 215, 353–367;
(d) H. Mayr, B. Kempf and A. R. Ofial, Acc. Chem. Res., 2003, 36,
66–77; (e) H. Mayr, O. Kuhn, M. F. Gotta and M. Patz, J. Phys. Org.
Chem., 1998, 11, 642–654; (f) H. Mayr, M. Patz, M. F. Gotta and
A. R. Ofial, Pure Appl. Chem., 1998, 70, 1993–2000; (g) H. Mayr and
M. Patz, Angew. Chem., 1994, 106, 990–1010, (Angew. Chem., Int. Ed.
Engl., 1994, 33, 938–957).
2 For reactions of carbocations with p-nucleophiles, see: (a) S. Lakhdar,
M. Westermaier, F. Terrier, R. Goumont, T. Boubaker, A. R. Ofial and
H. Mayr, J. Org. Chem., 2006, 71, 9088–9095; (b) A. D. Dilman and
H. Mayr, Eur. J. Org. Chem., 2005, 9, 1760–1764; (c) T. Tokuyasu and
H. Mayr, Eur. J. Org. Chem., 2004, 13, 2791–2796; (d) B. Kempf, N.
Hampel, A. R. Ofial and H. Mayr, Chem.–Eur. J., 2003, 9, 2209–2218;
(e) H. Mayr, M. F. Gotta, T. Bug, N. Hering, B. Irrgang, B. Janker, B.
Kempf, R. Loos, A. R. Ofial, G. Remennikov and H. Schimmel, J. Am.
Chem. Soc., 2001, 123, 9500–9512.
3 For reactions of carbocations with hydride donors, see: (a) H. Mayr,
G. Lang and A. R. Ofial, J. Am. Chem. Soc., 2002, 124, 4076–4083;
(b) M. A. Funke and H. Mayr, Chem.–Eur. J., 1997, 3, 1214–1222.
4 For reactions of carbocations with n-nucleophiles, see: (a) F. Brotzel,
Y. C. Chu and H. Mayr, J. Org. Chem., 2007, 72, 3679–3688; (b) F.
Brotzel, B. Kempf, T. Singer, H. Zipse and H. Mayr, Chem.–Eur. J.,
2007, 13, 336–345; (c) T. B. Phan and H. Mayr, Eur. J. Org. Chem.,
2006, 2530–2537; (d) B. Kempf and H. Mayr, Chem.–Eur. J., 2005, 11,
917–927; (e) T. B. Phan and H. Mayr, Can. J. Chem., 2005, 83, 1554–
1560; (f) S. Minegishi and H. Mayr, J. Am. Chem. Soc., 2003, 125,
286–295.
Electrophile in DMSO
in DMSO–H2O (50 : 50)
in H2O
1a
1.27 × 103
8.17 × 103
1.76 × 106, a
6.39 × 103
2.28 × 104
—
—
—
1b
(lil)2CH+
1.50 × 105, b
a From ref. 5. b From ref. 27.
(compared with benzhydrylium ion 1h as a reference) by approx-
imately one order of magnitude. The observed similar reactivities
of amines towards 1 in DMSO and DMSO–H2O (50 : 50 v,v)
can therefore be explained by a compensation effect, i.e., hy-
dration of amines reduces their nucleophilicities by a similar
amount as hydration increases the electrophilicities of the Michael
acceptors 1.
A more quantitative analysis of these data appears problematic,
because Bernasconi et al.16,28 and Lee et al.29 have previously
suggested that the transition states of the amine additions may
also be stabilized by O–H interactions as depicted in Scheme 4.
Because the additions of carbanions to 1a–d, which are described
in Table 3, cannot profit from such O–H interactions, the good
agreement between calculated and experimental rate constants
in Table 4 argues against a large contribution of these inter-
actions.
5 R. Lucius, R. Loos and H. Mayr, Angew. Chem., 2002, 114, 97–102,
(Angew. Chem., Int. Ed., 2002, 41, 91–95).
6 T. Lemek and H. Mayr, J. Org. Chem., 2003, 68, 6880–6886.
7 See references 10–13 cited in: D. B. Ramachary, K. Anebouselvy, N. S.
Chowdari and C. F. Barbas III, J. Org. Chem., 2004, 69, 5838–5849.
8 (a) R. Cammi, C. Ghio and J. Tomasi, Int. J. Quantum Chem., 1986, 29,
527–539; (b) E. Liedl and P. Wolschann, Monatsh. Chem., 1982, 113,
1067–1071; (c) H. Goerner, J. Leitich, O. E. Polansky, W. Riemer, U.
Ritter-Thomas and B. Schlamann, Monatsh. Chem., 1980, 111, 309–
329; (d) P. Margaretha, Tetrahedron, 1972, 28, 83–87; (e) P. Margaretha
and O. E. Polansky, Monatsh. Chem., 1969, 100, 576–583.
9 (a) J. Bloxham and C. P. Dell, J. Chem. Soc., Perkin Trans. 1, 1993, 24,
3055–3059; (b) N. F. Eweiss, J. Heterocycl. Chem., 1982, 19, 273–277;
(c) P. P. Righetti, A. Gamba, G. Tacconi and G. Desimoni, Tetrahedron,
1981, 37, 1779–1785; (d) J. Bitter, J. Leitich, H. Partale, O. E. Polansky,
W. Riemer, U. Ritter-Thomas, B. Schlamann and B. Stilkerieg, Chem.
Ber., 1980, 113, 1020–1032.
Scheme 4 Addition of an amine to 2-benzylidene-1,3-indandione 1 (TS:
transition state, T*: zwitterionic intermediate).
Conclusions
10 L. P. Zalukaevs and I. Anokhina, J. Gen. Chem. USSR, 1964, 34, 834–
836, (Zh. Obshch. Khim., 1964, 34, 840–843).
The 2-benzylidene-indan-1,3-diones 1a–d have been shown to have
electrophilicity parameters in the range of −10 > E > −15. With
these data and the previously published nucleophilicity parameters
of carbanions and amines,30 it has become possible to calculate
the rates of additions of these nucleophiles to 2-benzylidene-
indan-1,3-diones 1a–d with an accuracy of better than a factor
of 3 in dimethyl sulfoxide solution. Because hydration appears to
increase the electrophilicities of 1a–d much more than it affects
the electrophilicities of the previously used reference electrophiles
(benzhydrylium ions and quinone methides), we recommend using
the E parameters of 2-benzylidene-1-3-indandiones 1a–d reported
in this work only for predictions of rate constants in aprotic
solvents.
11 T. Zimaity, E.-S. Afsah and M. Hammouda, Indian J. Chem., Sect. B:
Org. Chem. Incl. Med. Chem., 1979, 17, 578–580.
12 L. P. Zalukaevs and D. G. Vnenkovskaya, Zh. Org. Khim., 1966, 2,
672–674.
13 E. I. Stankevich and G. Y. Yanags, J. Gen. Chem. USSR, 1962, 32,
1123–1126, (Zh. Obshch. Khim., 1962, 32, 1146–1151).
14 (a) B. A. Arbuzov, T. D. Sorokina, N. P. Bogonostseva and V. S.
Vinogradova, Dokl. Akad. Nauk SSSR, 1966, 171, 605–608; (b) A.
Mustafa, M. M. Sidky and F. M. Soliman, Tetrahedron, 1967, 23, 99–
105; (c) F. M. Soliman, M. M. Said and S. S. Maigali, Heteroat. Chem.,
1997, 8, 157–164.
15 X.-Q. Zhu, H.-Y. Wang, J.-S. Wang and Y.-C. Liu, J. Org. Chem., 2001,
66, 344–347.
16 C. F. Bernasconi and M. W. Stronach, J. Am. Chem. Soc., 1991, 113,
2222–2227.
17 T. Bug, T. Lemek and H. Mayr, J. Org. Chem., 2004, 69, 7565–7576.
18 S. T. A. Berger, A. R. Ofial and H. Mayr, J. Am. Chem. Soc., 2007, 129,
9753–9761.
19 R. K. Behera and A. Nayak, Indian J. Chem. B, 1976, 14, 223–224.
20 (a) C. F. Bernasconi, A. Laibelman and J. L. Zitomer, J. Am. Chem.
Soc., 1985, 107, 6563–6570; (b) C. F. Bernasconi, A. Laibelman and
J. L. Zitomer, J. Am. Chem. Soc., 1985, 107, 6570–6575.
21 T. B. Phan, M. Breugst and H. Mayr, Angew. Chem., 2006, 118, 3954–
3959, (Angew. Chem., Int. Ed., 2006, 45, 3869–3874).
Acknowledgements
Financial support by the Deutsche Forschungsgemeinschaft
(Ma 673–17) and the Fonds der Chemischen Industrie is gratefully
acknowledged.
This journal is
The Royal Society of Chemistry 2007
Org. Biomol. Chem., 2007, 5, 3020–3026 | 3025
©