Organic Letters
Letter
Finally, we have briefly examined reactions under nonacidic
conditions (Scheme 6). Oxidative conditions are compatible
AUTHOR INFORMATION
■
Corresponding Author
ORCID
a
Scheme 6. Reactions of the 1-Acyl Triazenes 16 and 1
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by funding from the Swiss National
Science Foundation and from the Ecole Polytechnique
■
a
Conditions: (29) DCM (0.2 M), mCPBA (1.1 equiv), rt, 2 h,
isolated yield; (30) LDA (1.42 equiv), prenyl bromide (1.5 equiv) in
THF, −78 °C, isolated yield.
́
́
Federale de Lausanne (EPFL).
REFERENCES
■
̈
̈
(1) For reviews, see: (a) Kolmel, D. K.; Jung, N.; Brase, S. Aust. J.
Chem. 2014, 67, 328−336. (b) Kimball, D. B.; Haley, M. M. Angew.
Chem., Int. Ed. 2002, 41, 3338−3351. (c) Nifontov, V. I.; Bel’skaya, N.
P.; Shtokareva, E. A. Pharm. Chem. J. 1993, 27, 652−665.
(d) Vaughan, K.; Stevens, M. F. G. Chem. Soc. Rev. 1978, 7, 377−397.
(2) (a) Smith, R. H., Jr.; Mehl, A. F.; Shantz, D. L.; Chmurny, G. N.;
Michejda, C. J. J. Org. Chem. 1988, 53, 1467−1471. (b) Smith, R. H.,
Jr.; Michejda, C. J. Synthesis 1983, 1983, 476−477.
with the triazene function, as evidenced by the synthesis of
epoxide 29. Strongly basic conditions are also tolerated, and we
were able to perform an alkylation reaction with prenyl-
bromide via an enolate intermediate generated by LDA (30).
In conclusion, we have shown that 1-acyl triazenes can be
prepared by hydrolysis or oxidation of 1-alkynyl triazenes.
Using these methods, we were able to synthesize for the first
time a variety of structurally diverse 1-acyl triazenes. The acyl
group at the N1 position was found to have a strong influence
on the physical and chemical properties of the triazenes.
Crystallographic analyses revealed extremely short N2−N3
bond lengths. Accordingly, the energy barrier for rotation
around this bond is much higher than what has been reported
for other triazenes. The new 1-acyl triazenes are thermally
robust compounds with a low susceptibility to hydrolyze.
Under acidic conditions, they act as acylating agents. Basic or
oxidative conditions, on the other hand, are well tolerated by
the triazene function.
In the present work, we have focused on the synthesis and
the properties of 1-acyl triazenes. However, investigating the
biological activity of these compounds appears worthwhile.
The bioactivity of previously reported triazenes is generally
related to the fact that they represent masked alkylating
agents.1,6 1-Acyl triazenes act as masked acylating, rather than
alkylating, agents. Therefore, these compounds might display a
biological activity which is distinct from that of other triazenes.
(3) (a) Wanner, M. J.; Koch, M.; Koomen, G.-J. J. Med. Chem. 2004,
47, 6875−6883. (b) Beukers, M. W.; Wanner, M. J.; Von Frijtag
Drabbe Kunzel, J. K.; Klaasse, E. C.; IJzerman, A. P.; Koomen, G.-J. J.
̈
Med. Chem. 2003, 46, 1492−1503. (c) Curtin, D. Y.; Druliner, J. D. J.
Org. Chem. 1967, 32, 1552−1557.
(4) Ito, S.; Fukuyama, T. J. Org. Chem. 1971, 36, 2008−2009.
(5) Bertho, A. J. Prakt. Chem. 1927, 116, 101−117.
(6) For examples, see: (a) Vajs, J.; Proud, C.; Brozovic, A.; Gazvoda,
̌
M.; Lloyd, A.; Roper, D. I.; Osmak, M.; Kosmrlj, J.; Dowson, C. G.
Eur. J. Med. Chem. 2017, 127, 223−234. (b) Sousa, A.; Santos, F.;
Gaspar, M. M.; Calado, S.; Pereira, J. D.; Mendes, E.; Francisco, A. P.;
Perry, M. J. Bioorg. Med. Chem. 2017, 25, 3900−3910. (c) Mouhri, Z.
S.; Goodfellow, E.; Kelley, S. P.; Stein, R. S.; Rogers, R. D.; Jean-
Claude, B. J. Molecules 2017, 22, 1183. (d) Cappoen, D.; Vajs, J.;
̌
Uythethofken, C.; Virag, A.; Mathys, V.; Kocevar, M.; Verschaeve, L.;
Gazvoda, M.; Polanc, S.; Huygen, K.; Kosmrlj, J. Eur. J. Med. Chem.
̌
2014, 77, 193−203. (e) Monteiro, A. S.; Almeida, J.; Cabral, G.;
Severino, P.; Videira, P. A.; Sousa, A.; Nunes, R.; Pereira, J. D.;
Francisco, A. P.; Perry, M. J.; Mendes, E. Eur. J. Med. Chem. 2013, 70,
1−9. (f) Perry, M. J.; Mendes, E.; Simplício, A. L.; Coelho, A.; Soares,
R. V.; Iley, J.; Moreira, R.; Francisco, A. P. Eur. J. Med. Chem. 2009,
44, 3228−3234.
(7) Ozment, J. L.; Schmiedekamp, A. M.; Schultz-Merkel, L. A.;
Smith, R. H., Jr.; Michejda, C. J. J. Am. Chem. Soc. 1991, 113, 397−
405.
ASSOCIATED CONTENT
■
S
* Supporting Information
(8) (a) Carvalho, E.; Iley, J.; Rosa, E. J. Chem. Soc., Perkin Trans. 2
1993, 865−870. (b) Smith, R. H., Jr.; Wladkowski, B. D.; Herling, J.
A.; Pfaltzgraff, T. D.; Taylor, J. E.; Thompson, E. J.; Pruski, B.; Klose,
J. R.; Michejda, C. J. J. Org. Chem. 1992, 57, 6448−6454. (c) Smith,
R. H., Jr.; Wladkowski, B. D.; Herling, J. A.; Pfaltzgraff, T. D.; Pruski,
B.; Klose, J.; Michejda, C. J. J. Org. Chem. 1992, 57, 654−661.
(d) Smith, R. H., Jr.; Mehl, A. F.; Hicks, A.; Denlinger, C. L.; Kratz,
L.; Andrews, A. W.; Michejda, C. J. J. Org. Chem. 1986, 51, 3751−
The Supporting Information is available free of charge on the
Experimental details and analytical data of the new
̌ ̌
3757. (e) Ludwig, M.; Pytela, O.; Vecera, M. Collect. Czech. Chem.
Accession Codes
̌
̌
̌
Commun. 1981, 46, 3104−3109. (f) Pytela, O.; Vecera, M.; Vetesník,
tallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
P. Collect. Czech. Chem. Commun. 1981, 46, 898−905. (g) Pytela, O.;
̌
̌
̌
Vecera, M.; Vetesník, P. Collect. Czech. Chem. Commun. 1980, 45,
1269−1278.
(9) Lu, H.; Li, C. Tetrahedron Lett. 2005, 46, 5983−5985.
̌
̌
̌
(10) Stefane, B.; Cernigoj, U.; Kocevar, M.; Polanc, S. Tetrahedron
Lett. 2001, 42, 6659−6662.
D
Org. Lett. XXXX, XXX, XXX−XXX