Organic Letters
Letter
334. (f) Sharma, R.; Thakur, K.; Kumar, R.; Kumar, I.; Sharma, U.
Distant C-H Activation/Functionalization: A New Horizon of
Selectivity Beyond Proximity. Catal. Rev.: Sci. Eng. 2015, 57, 345.
(g) Rousseau, G.; Breit, B. Removable Directing Groups in Organic
Synthesis and Catalysis. Angew. Chem., Int. Ed. 2011, 50, 2450.
(h) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Recent
Advances in Directed C−H Functionalizations Using Monodentate
Nitrogen-Based Directing Groups. Org. Chem. Front. 2014, 1, 843.
(i) Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.; Dong, G. Transition
Metal-Catalyzed Ketone-Directed or Mediated C−H Functionaliza-
tion. Chem. Soc. Rev. 2015, 44, 7764. (j) Das, R.; Kumar, G. S.; Kapur,
M. Amides as Weak-Coordinating Groups in Proximal C-H Bond
Activation. Eur. J. Org. Chem. 2017, 2017, 5439.
(5) For selected reviews, see: (a) Baraldi, P. G.; Barco, A.; Benetti,
S.; Pollini, G. P.; Simoni, D. Synthesis of Natural Products via
Isoxazoles. Synthesis 1987, 1987, 857. (b) Patil, N. T.; Yamamoto, Y.
Coinage Metal-Assisted Synthesis of Heterocycles. Chem. Rev. 2008,
108, 3395. (c) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.;
Gevorgyan, V. Transition Metal-Mediated Synthesis of Monocyclic
Aromatic Heterocycles. Chem. Rev. 2013, 113, 3084. (d) Hu, F.;
Szostak, M. Recent Developments in the Synthesis and Reactivity of
Isoxazoles: Metal Catalysis and Beyond. Adv. Synth. Catal. 2015, 357,
2583. (e) Li, L.; Tan, T.-D.; Zhang, Y.-Q.; Liu, X.; Ye, L.-W. Recent
Advances in Transition-Metal-Catalyzed Reactions of Alkynes with
Isoxazoles. Org. Biomol. Chem. 2017, 15, 8483. (f) Agrawal, N.;
Mishra, P. The Synthetic and Therapeutic Expedition of Isoxazole and
its Analogs. Med. Chem. Res. 2018, 27, 1309.
in the Synthesis of Pyrazole−Nitrogen Heterocycle Dyads. J. Org.
Chem. 2018, 83, 3177.
(10) (a) Giri, S. S.; Liu, R.-S. Gold-Catalyzed [4 + 3]- and [4 + 2]-
Annulations of 3-en-1-ynamides with Isoxazoles via Novel 6π-
Electrocyclizations of 3-Azahepta Trienyl Cations. Chem. Sci. 2018,
9, 2991. (b) Zhu, X.-Q.; Yuan, H.; Sun, Q.; Zhou, B.; Han, X.-Q.;
Zhang, Z.-X.; Lu, X.; Ye, L.-W. Benign Catalysis with Zinc: Atom-
Economical and Divergent Synthesis of Nitrogen Heterocycles by
Formal [3 + 2] Annulation of Isoxazoles with Ynol Ethers. Green
Chem. 2018, 20, 4287.
(11) (a) Chu, J.-H.; Chen, C.-C.; Wu, M.-J. Palladium-Catalyzed
Arylation and Alkylation of 3,5 Diphenylisoxazole with Boronic Acids
via C-H Activation. Organometallics 2008, 27, 5173. (b) For a related
work on alkenylation of 1-phenylpyrazoles see Umeda, N.; Hirano, K.;
Satoh, T.; Miura, M. Rhodium-Catalyzed Mono- and Divinylation of
1-Phenylpyrazoles and Related Compounds via Regioselective C-H
Bond Cleavage. J. Org. Chem. 2009, 74, 7094.
(12) Banerjee, A.; Bera, A.; Santra, S. K.; Guin, S.; Patel, B. K.
Palladium-Catalysed Regioselective Aroylation and Acetoxylation of
3,5-Diarylisoxazole via Ortho C−H Functionalizations. RSC Adv.
2014, 4, 8558.
(13) Xu, L.; Zhang, C.; He, Y.; Tan, L.; Ma, D. Rhodium-Catalyzed
Regioselective C7-Functionalization of N-Pivaloylindoles. Angew.
Chem., Int. Ed. 2016, 55, 321.
(14) Chappell, B.; Dedman, N.; Wheeler, S. Studies on the
Palladium-Catalysed Direct Alkenylation of 1,2-Azoles. Tetrahedron
Lett. 2011, 52, 3223.
(15) (a) Nakamura, N.; Tajima, Y.; Sakai, K. Direct Phenylation of
Isoxazoles Using Palladium Catalysts. Synthesis of 4-Phenylmuscimol.
Heterocycles 1982, 17, 235. (b) Chiong, H. A.; Daugulis, O. Palladium-
Catalyzed Arylation of Electron-Rich Heterocycles with Aryl
Chlorides. Org. Lett. 2007, 9, 1449.
(16) Kromann, H.; Slok, F. A.; Johansen, T. N.; Krogsgaard-Larsen,
P. A convenient synthesis of 4-substituted 3-ethoxy-5- methylisox-
azoles by palladium-catalyzed coupling reactions. Tetrahedron 2001,
57, 2195.
(17) (a) Tiwari, V. K.; Kamal, N.; Kapur, M. One Substrate, Two
Modes of C-H Functionalization: A Metal-Controlled Site-selectivity
Switch in C-H Arylation Reactions. Org. Lett. 2017, 19, 262.
(b) Tiwari, V. K.; Pawar, G. G.; Jena, H. K.; Kapur, M. Palladium
Catalyzed, Heteroatom-Guided C-H Functionalization in the Syn-
thesis of Substituted Isoquinolines and Dihydroisoquinolines. Chem.
Commun. 2014, 50, 7322. (c) Pawar, G. G.; Singh, G.; Tiwari, V. K.;
Kapur, M. Dehydrogenative Heck Reaction (Fujiwara-Moritani
Reaction) of Unactivated Olefins with simple Dihydropyrans under
Aprotic Conditions. Adv. Synth. Catal. 2013, 355, 2185.
(18) Galenko, E. E.; Bodunov, V. A.; Galenko, A. V.; Novikov, M. S.;
Khlebnikov, A. F. Fe(II)-Catalyzed Isomerization of 4-Vinylisoxazoles
into Pyrroles. J. Org. Chem. 2017, 82, 8568.
(19) Wang, L.; Wu, W.; Chen, Q.; He, M. Rhodium-Catalyzed
Olefination of Aryl Tetrazoles via Direct C−H Bond Activation. Org.
Biomol. Chem. 2014, 12, 7923.
(20) Park, S. H.; Kim, J. Y.; Chang, S. Rhodium-Catalyzed Selective
Olefination of Arene Esters via C−H Bond Activation. Org. Lett.
2011, 13, 2372.
(21) (a) Moselage, M.; Li, J.; Ackermann, L. Cobalt-Catalyzed C−H
Activation. ACS Catal. 2016, 6, 498. (b) Lapointe, D.; Fagnou, K.
Overview of the Mechanistic Work on the Concerted Metallation-
Deprotonation Pathway. Chem. Lett. 2010, 39, 1118.
(6) For selected examples, see: (a) Hewings, D. S.; Wang, M.;
Philpott, M.; Fedorov, O.; Uttarkar, S.; Filippakopoulos, P.; Picaud,
S.; Vuppusetty, C.; Marsden, B.; Knapp, S.; Conway, S. J.; Heightman,
T. D. 3,5-Dimethylisoxazoles Act As Acetyl-lysine-mimetic Bromo-
domain Ligands. J. Med. Chem. 2011, 54, 6761. (b) Yu, L. F.; Eaton, J.
B.; Fedolak, A.; Zhang, H. K.; Hanania, T.; Brunner, D.; Lukas, R. J.;
Kozikowski, A. P. Discovery of Highly Potent and Selective α4β2-
Nicotinic Acetylcholine Receptor (nAChR) Partial Agonists Con-
taining an Isoxazolylpyridine Ether Scaffold that Demonstrate
Antidepressant like Activity. Part II. J. Med. Chem. 2012, 55, 9998.
(c) Jensen, A. A.; Plath, N.; Pedersen, M. H. F.; Isberg, V.; Krall, J.;
Wellendorph, P.; Stensbol, T. B.; Gloriam, D. E.; Krogsgaard-Larsen,
P.; Frolund, B. Design, Synthesis, and Pharmacological Character-
ization of N- and O-Substituted 5,6,7,8 Tetrahydro-4H-isoxazolo[4,5-
d]azepin-3-ol Analogues: Novel 5-HT2A/5-HT2C Receptor Agonists
with Pro-Cognitive Properties. J. Med. Chem. 2013, 56, 1211.
(7) (a) Wang, J.; Wu, Y.; Ma, C.; Fiorin, G.; Wang, J.; Pinto, L. H.;
Lamb, R. A.; Klein, M. L.; DeGrado, W. F. Structure and Inhibition of
the Drug-Resistant S31N Mutant of The M2 Ion Channel of
Influenza A Virus. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 1315.
(b) Koufaki, M.; Fotopoulou, T.; Kapetanou, M.; Heropoulos, G. A.;
Gonos, E. S.; Chondrogianni, N. Microwave-Assisted Synthesis of 3,5-
disubstituted Isoxazoles and Evaluation of Their Anti-ageing Activity.
Eur. J. Med. Chem. 2014, 83, 508.
(8) (a) Auricchio, S.; Bini, A.; Pastormerlo, E.; Truscello, A. M. Iron
Dichloride Induced lsomerization or Reductive Cleavage of
Isoxazoles: A Facile Synthesis of 2-Carboxy-azirines. Tetrahedron
1997, 53, 10911. (b) Li, C.-S.; Lacasse, E. Synthesis of Pyran-4-ones
from Isoxazoles. Tetrahedron Lett. 2002, 43, 3565. (c) Donati, D.;
Ferrini, S.; Fusi, S.; Ponticelli, F. On the Reactivity of Isoxazoles with
Mo(CO)6. J. Heterocycl. Chem. 2004, 41, 761. (d) Tang, S.; He, J.;
Sun, Y.; He, L.; She, X. Efficient and Regioselective Synthesis of 5-
Hydroxy-2-isoxazolines: Versatile Synthons for Isoxazoles, β-Lactams,
and γ-Amino Alcohols. J. Org. Chem. 2010, 75, 1961.
(9) (a) Agafonova, A. V.; Smetanin, I. A.; Rostovskii, N. V.;
Khlebnikov, A. F.; Novikov, M. S. Synthesis of 2-Halo-2H-Azirine-2-
Carboxylic Acid Amides and Esters by Isomerization of 5-
(dialkylamino/alkoxy)- Substituted Isoxazoles, Catalyzed by Iron(II)
Sulphate. Chem. Heterocycl. Compd. 2017, 53, 1068. (b) Mikhailov, K.
I.; Galenko, E. E.; Galenko, A. V.; Novikov, M. S.; Ivanov, A. Yu.;
Starova, G. L.; Khlebnikov, A. F. Fe(II)-Catalyzed Isomerization of 5-
Chloroisoxazoles to 2H-Azirine-2-carbonyl Chlorides as a Key Stage
E
Org. Lett. XXXX, XXX, XXX−XXX