Organic Letters
Letter
electron-donating effect of the oxazole ring, making deprotona-
tion at the 2-proton and formation of the lithium salt on the
oxazole ring easier, thus leading to a difference in yield. In all of
the coupled products, the glycals became attached to the
heterocycles at the C-2 position, suggesting that our method
shows high regioselectivity. To further investigate the practicality
of this protocol, nine coupling reactions involving all types of 1-
iodoglycal and heterocycle were performed, in which the
substituent effects were also considered. These reactions were
conducted on an approximately 1 mmol scale under the
optimized conditions, and the coupling yields of products 6a,
7a, 13c, 19a, 21b, 22c, 25a, 27a, and 31c were almost consistent
with the yields of the small-scale reactions.
REFERENCES
■
(1) (a) De Clercq, E. J. Med. Chem. 2016, 59, 2301. (b) Hofsteenge, J.
D.; Muller, R.; de Beer, T.; Loffler, A.; Richter, W. J.; Vliegenthart, J.
̈
̈
Biochemistry 1994, 33, 13524. (c) de Beer, T.; Vliegenthart, J.; Loffler,
̈
A.; Hofsteenge, J. Biochemistry 1995, 34, 11785. (d) Granier, T.; Vasella,
A. Helv. Chim. Acta 1995, 78, 1738. (e) Wamhoff, H.; Warnecke, H.
Arkivoc 2001, 2, 95.
(2) Wu, Y.; Zhang, Z.-X.; Hu, H.; Li, D.; Qiu, G.; Hu, X.; He, X.
Fitoterapia 2011, 82, 288.
(3) (a) Kang, S. Y.; Song, K.-S.; Lee, J.; Lee, S.-H.; Lee, J. Bioorg. Med.
Chem. 2010, 18, 6069. (b) Yonekubo, S.; Fushimi, N. Eur. Patent Appl.
1813611 A1, 2007.
(4) (a) Smellie, I. A. S.; Fromm, A.; Fabbiani, F.; Oswald, I. D. H.;
White, F. J.; Paton, R. M. Tetrahedron 2010, 66, 7155. (b) Bokor, E.;
́
Based on our results and previous reports,8a,10,18 we propose
that the coordination between copper and nitrogen/oxygen on
the substrates probably takes place first, which assists the
deprotonation of H-2 on the heterocycles by t-BuOLi, thus
furnishing the lithium salt of heterocycles, and then, lithium−
copper exchange occurs to afford the organocopper species. On
the other hand, the palladium-mediated oxidation addition with
1-iodoglycals takes place to give a Pd intermediate, which is
followed by transmetalation with the organocopper and
subsequent reductive elimination to give the heteroaryl C-
glycosides. There is also a possibility that the reactions of azoles
and indoles with 1-iodoglycals occur through different catalytic
cycles, and further investigation on the reaction mechanism is
needed.
In conclusion, we developed a general and highly regiose-
lective method for direct cross-coupling of 1-iodoglycals with
indoles via a Pd(OAc)2 and CuI catalytic system in a C−H
activation manner. This method can be applied to other
heterocycle substrates including thiazoles, benzothiazoles,
imidazoles, benzimidazoles, and benzoxazoles, and by this
approach, several series of 2-heteroaryl-C-Δ1,2-glycosides have
been efficiently prepared. Based on these results, we believe that
this protocol will find wide applications in the preparation of
biologically important compounds.
́
Kun, S.; Docsa, T.; Gergely, P.; Somsak, L. ACS Med. Chem. Lett. 2015,
́
6, 1215. (c) Kantsadi, A. L.; Bokor, E.; Kun, S.; Stravodimos, G. A.;
Chatzileontiadou, D. S. M.; Leonidas, D. D.; Szakacs, A.; Batta, G.;
Docsa, T.; Gergely, P.; Somsak, L. Eur. J. Med. Chem. 2016, 123, 737.
́
́
(5) (a) Doucey, M.-A.; Hess, D.; Blommers, M. J. J.; Hofsteenge, J.
Glycobiology 1999, 9, 435. (b) Hofsteenge, J.; Blommers, M.; Hess, D.;
Furmanek, A.; Miroshnichenko, O. J. Biol. Chem. 1999, 274, 32786.
(c) Hartmann, S.; Hofsteenge, J. J. Biol. Chem. 2000, 275, 28569.
(d) Hofsteenge, J.; Huwiler, K. G.; Macek, B.; Hess, D.; Lawler, J.;
Mosher, D. F.; Peter-Katalinic, J. J. Biol. Chem. 2001, 276, 6485.
(e) Gonzalez de Peredo, A.; Klein, D.; Macek, M.; Hess, D.; Peter-
Katalinic, J.; Hofsteenge, J. Mol. Cell. Proteomics 2002, 1, 11.
(f) Furmanek, A.; Hess, D.; Rogniaux, H.; Hofsteenge, J. Biochemistry
2003, 42, 8452.
́ ́
(6) (a) Hadady, Z.; Toth, M.; Somsak, L. Arkivoc 2004, 7, 140.
(b) Zhang, F.; Mu, D.; Wang, L.; Du, P.; Han, F.; Zhao, Y. J. Org. Chem.
2014, 79, 9490. (c) Nishikawa, T.; Koide, Y.; Kanakubo, A.; Yoshimura,
H.; Isobe, M. Org. Biomol. Chem. 2006, 4, 1268.
(7) (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem.,
Int. Ed. 2009, 48, 5094. (b) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev.
2002, 102, 1731. (c) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem.
Res. 2009, 42, 1074. (d) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F.
Chem. Soc. Rev. 2011, 40, 4740. (e) Engle, K. M.; Mei, T.-S.; Wasa, M.;
Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
(8) (a) Unsinn, A.; Wunderlich, S. H.; Knochel, P. Adv. Synth. Catal.
2013, 355, 989. (b) Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem.
Soc. 2005, 127, 8050.
(9) Liu, X.-W.; Shi, J.-L.; Yan, J.-X.; Wei, J.-B.; Peng, K.; Dai, L.; Li, C.-
G.; Wang, B.-Q.; Shi, Z.-J. Org. Lett. 2013, 15, 5774.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(10) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404.
(11) (a) Shigenobu, M.; Takenaka, K.; Sasai, H. Angew. Chem., Int. Ed.
2015, 54, 9572. (b) Ye, M.; Edmunds, A. J. F.; Morris, J. A.; Sale, D.;
Zhang, Y.; Yu, J. Chem. Sci. 2013, 4, 2374. (c) Ye, M.; Gao, G.-L.;
Edmunds, A. J. F.; Worthington, P. A.; Morris, J. A.; Yu, J.-Q. J. Am.
Chem. Soc. 2011, 133, 19090. (d) Xu, Y.; Zhao, L.; Li, Y.; Doucet, H. Adv.
Synth. Catal. 2013, 355, 1423.
Experimental procedures and characterization data for all
(12) Liu, M.; Niu, Y.; Wu, Y.-F.; Ye, X.-S. Org. Lett. 2016, 18, 1836.
(13) Morimoto, N.; Yamamoto, S.; Takeuchi, Y.; Nishina, Y. RSC Adv.
2013, 3, 15608.
(14) Murali, R.; Nagarajan, M. Carbohydr. Res. 1996, 280, 351.
(15) (a) Hans, S. K.; Camara, F.; Altiti, A.; Martín-Montalvo, A.;
Brautigan, D. L.; Heimark, D.; Larner, J.; Grindrod, S.; Brown, M. L.;
Mootoo, D. R. Bioorg. Med. Chem. 2010, 18, 1103. (b) Pedersen, C. M.;
Olsen, J.; Brka, A. B.; Bols, M. Chem. - Eur. J. 2011, 17, 7080.
(16) Ashique, R.; Chirakal, R. V.; Hughes, D. W.; Schrobilgen, G. J.
Carbohydr. Res. 2006, 341, 457.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Author Contributions
†S.Z. and Y.-H.N. contributed equally.
Notes
(17) Qin, X.; Cong, X.; Zhao, D.; You, J.; Lan, J. Chem. Commun. 2011,
47, 5611.
The authors declare no competing financial interest.
(18) Xu, H.; Qiao, X.; Yang, S.; Shen, Z. J. Org. Chem. 2014, 79, 4414.
ACKNOWLEDGMENTS
■
This work was financially supported by the National Natural
Science Foundation of China (Grant No. 21232002) and Grant
2013CB910700 from the Ministry of Science and Technology of
China.
D
Org. Lett. XXXX, XXX, XXX−XXX