Treatment of the mixture with TBAF in THF allowed the
isolation of dimer 9 as a 5:1 mixture of alkene isomers (35%)
and deprotected vitamin 3 (52%). Remarkably, the olefin
metathesis does not affect the triene system. Unfortunately,
attempts to obtain calcitriol dimer 2 by chemoselective
hydrogenation of the nonconjugated double bond led to the
fully saturated dimer.
To circumvent this problem we decided to carry out the
olefin metathesis reaction and hydrogenation before con-
struction of the triene system. Treatment of olefinic ketone
4 with catalytic amounts of (Cy3P)2Cl2RudCHPh14 (10 mol
%) provided dimeric ketone 10 as a mixture of alkene
isomers (6:1) in 46% yield together with recovered starting
ketone (50%) (Scheme 4). Catalytic hydrogenation of the
olefinic mixture 10 for 12 h at atmospheric pressure using a
rhodium catalyst gave dimeric ketone 11 in quantitative yield.
Treatment of 11 with the ylide derived from phosphonium
oxide 5 (2.2 equiv) led to stereoselective formation of
protected calcitriol dimer 2a in excellent yield (85%).
Removal of the six silyl groups with TBAF in THF (rt, 24
h) afforded the desired calcitriol dimer 2 in 74% yield.
In conclusion, we have prepared the first dimer containing
two calcitriol moieties, in each of which the VDR-binding
region is unobstructed. The synthesis is short and convergent
and should allow the preparation of an entire family of
dimeric vitamin D structures. The length of the linker could
be modulated to optimize binding with the receptor and the
biological response associated with the binding of two VDR
molecules. Biological evaluation of dimer 2 in terms of its
VDR binding, dimerization induction capacities, and influ-
ence on signal transduction mechanisms are currently
underway.
Acknowledgment. We thank the DGES (Spain, PM97-
0166), Xunta de Galicia (XUGA 10305A98), and the
University of A Corun˜a for financial support. J.P.S. thanks
the Spanish Ministry of Education and Culture for a research
grant. We also thank Mrs. Paulina Freire for reproducing
some experiments and Mr. Carlos Gregorio for preparation
of the A ring phosphine oxide.
Scheme 4. Synthesis of Calcitriol Dimer 2
Supporting Information Available: Complete charac-
terization data (1H NMR and 13C NMR and mass spectral
data) for all new compounds. This material is available free
OL990878Z
(4) (a) Driver, S. T.; Schreiber, S. L. J. Am. Chem. Soc. 1997, 119, 5106.
(b) Ho, S. N.; Biggar, S. R.; Spencer, D. M.; Schreiber, S. L.; Crabtree, G.
R. Nature 1996, 382, 822. (c) Spencer, D. M.; Wandless, T. J.; Schreiber,
S. L.; Crabtree, G. R. Science 1993, 262, 1019.
(5) (a) Pruschy, M. N.; Spencer, D. M.; Kapoor, T. M.; Miyaki, H.;
Crabtree, G. R.; Schreiber, S. L. Chem. Biol. 1994, 1, 163. (b) Belshaw, P.
J.; Spencer, D. M.; Crabtree, G. R.; Schreiber, S. L. Chem. Biol. 1996, 3,
731.
(6) Calverley, M. J.; Jones, J. In Antitumor Steroids; Blickenstaff, R.
T., Ed.; Academic Press: San Diego, 1992; Chapter 7, pp 193-270.
(7) Bouillon, R.; Okamura, W. H.; Norman, A. W. Endocrine ReV. 1995,
16, 200.
(8) Olefin metathesis has proved to be useful for homodimerization,
see: Clark, T. D.; Gadhiri, M. R. J. Am. Chem. Soc. 1995, 117, 12364 and
ref 4a.
(9) Lythgoe, B.; Moran, T. A.; Nambudiry, M. E. N.; Ruston, S.;
Tideswell, J.; Wright, P. W. Tetrahedron Lett. 1975, 3863.
(10) (a) Torneiro, M.; Fall, Y.; Castedo, L.; Mourin˜o, A. Tetrahedron
Lett. 1992, 33, 105. (b) D’Halleweyn, C.; Van Haver, D.; Van der Eycken,
J.; De Clerq, P.; Vandewalle, M. Bioorg. Med. Chem. Lett. 1992, 2, 477.
(11) Mascaren˜as, J. L.; Pe´rez Sestelo, J.; Castedo, L.; Mourin˜o, A.
Tetrahedron Lett. 1991, 32, 2813.
(12) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011.
(13) Mourin˜o, A.; Torneiro, M.; Vitale, C.; Ferna´ndez, S.; Pe´rez Sestelo,
J.; Anne´, S.; Gregorio, C. Tetrahedron Lett. 1997, 38, 4713.
(14) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996,
118, 100.
Org. Lett., Vol. 1, No. 7, 1999
1007