7 X. Yang, T. B. Rauchfuss and S. Wilson, J. Chem. Soc., Chem.
Commun., 1990, 34.
8 J. G. Breitzer, A. I. Smirnov, L. F. Szczepura, S. R. Wilson and
T. B. Rauchfuss, Inorg. Chem., 2001, 40, 1421.
and 32 carefully centered reflections choosed from diverse
regions of reciprocal spaces in the ranges 18–30, 19–38, and
18–40 Њ for 1–3, respectively. The check of the standard
reflections showed no significant decrease. The space groups
were choosed on the basis of the systematic extinction and of
intensity statistics. The intensities recorded by the θ–2θ scan
technique, were corrected for Lorentz and polarization factors.
An absorption correction was applied after the last isotropic
refinement cycle following the empirical method by Walker and
Stuart,31 for 3 (maximum and minimum values for the trans-
mission factors: 1.000 and 0.697); the corresponding attempts
for 1 and 2 were unsuccessful. The structures were solved using
direct methods (Sir9232) and refined by the full-matrix least-
squares on F 2 with SHELXL-97,33 first with isotropic thermal
parameters and then with anisotropic thermal parameters for
non-hydrogen atoms, excluding the carbon atoms of the butyl
groups of 1 and 2 and those of the disordered phenyl ring A of
3. The butyl groups have a large thermal motion, indicating the
presence of severe disorder. Attempts to split the carbon atoms
in “partial” atoms were unsuccessful. Rigid-body constraints
were introduced for these groups, for the phenyl rings of 2, and
for the two images of the phenyl ring A of 3 (occupancy factor:
0.6 and 0.4, respectively). All the hydrogen atoms were intro-
duced from geometrical calculations and refined using a riding
model. Compound 2 crystallizes in the space group Pca21,
however a Flack34 parameter of Ϫ0.05(3) confirms the absolute
structure.
9 F. Bigoli, P. Deplano, F. A. Devillanova, V. Lippolis, P. J. Lukes,
M. L. Mercuri, M. A. Pellinghelli and E. F. Trogu, J. Chem. Soc.,
Chem. Commun., 1995, 371; F. Bigoli, P. Deplano, F. A. Devillanova,
J. R. Ferraro, V. Lippolis, P. J. Lukes, M. L. Mercuri, M. A.
Pellinghelli, E. F. Trogu and J. M. Williams, Inorg. Chem., 1997, 36,
1218; F. Bigoli, P. Deplano, M. L. Mercuri, M. A. Pellinghelli,
G. Pintus, E. F. Trogu, G. Zonnedda, H. H. Wang and J. M.
Williams, Inorg. Chim. Acta, 1998, 273, 175.
10 P. Deplano, M. L. Mercuri, G. Pintus and E. F. Trogu, Comments
Inorg. Chem. (A), 2001, 22, 353.
11 D. Atzei, F. Bigoli, P. Deplano, M. A. Pellinghelli and E. F. Trogu,
Phosphorus Sulfur, 1988, 37, 189.
12 A. Pani, E. Pinna, F. Scintu, G. Perra, S. Corrias, E. Trogu,
P. Deplano and P. La Colla, Anticancer Res., 1998, 18, 4429.
13 F. Bigoli, P. Deplano, M. L. Mercuri, M. A. Pellinghelli, G. Pintus
and E. F. Trogu, Chem. Commun., 1999, 2093.
14 D. J. Rauscher, E. G. Thaler, J. C. Huffmann and K. G. Caulton,
Organometallics, 1991, 10, 2209; E. G. Thaler, K. Folting and
K. G. Caulton, J. Am. Chem. Soc., 1990, 112, 2664.
15 K. Brandt and W. S. Sheldrick, Chem. Ber., 1996, 129, 1199.
16 C. Bianchini, C. Mealli, A. Meli and M. Sabat, Inorg. Chem., 1984,
23, 2731; C. Bianchini, C. A. Gilardi, A. Meli and A. Orlandini,
J. Organomet. Chem., 1985, 286, 259.
17 G. Dyer and J. Roscoe, Inorg. Chem., 1996, 35, 4098.
18 T. L. Blundell and H. M. Powell, Acta Crystallogr., Sect. B, 1971, 27,
2304.
19 M. Nardelli,
A Fortran Routine for Calculating Non-Bonded
Potential Energy, University of Parma, 1996.
The not so satisfactory values for 1 and 2 result from the bad
quality of the crystals (most of them were twinned), as well as
from the above mentioned disorder. Atomic scattering factors
and the anomalous scattering coefficients were taken from
International Tables for X-ray Crystallography35 The final
geometries were analysed by the program PARST9736 and the
drawings were made with ZORTEP.37 All calculations were
carried out on the ENCORE 91 and DIGITAL AlphaStation
255 computers of the CSSD of the C. N. R. Parma. Selected
bond lengths and angles are reported in Tables 2,3, and 4 for
1–3, respectively.
20 J.-H. Chou, T. B. Rauchfuss and L. F. Szczepura, J. Am. Chem. Soc.,
1998, 120, 1805.
21 W. P. Mayweg and G. N. Schrauzer, Chem. Commun., 1966,
640.
22 Z.-Q. Tian, J. P. Donahue and R. H. Holm, Inorg. Chem., 1995, 34,
5568; G. A. Bowmaker, P. D. W. Boyd and G. K. Campbell, Inorg.
Chem., 1983, 22, 1208; J. M. Bevilacqua, J. A. Zuleta and
R. Eisenberg, Inorg. Chem., 1994, 33, 258.
23 G. A. Bowmaker, P. D. W. Boyd and G. K. Campbell, Inorg. Chem.,
1982, 21, 2403.
24 R. Vicente, J. Ribas, X. Solans, M. Font-Altaba, A. Mari, P. De Loth
and P. Cassoux, Inorg. Chim. Acta, 1987, 132, 229.
25 P. K. Baker, M. G. B. Drew, E. E. Parker, N. Robertson and A. E.
Underhill, J. Chem. Soc., Dalton Trans., 1997, 1429.
26 K. I. Pokhodnya, C. Faulmann, I. Malfant, R. Andreu-Solano,
P. Cassoux, A. Mlayah, D. Smirnov and J. Leotin, Synth. Met., 1999,
103, 2016.
CCDC reference numbers 102390, 171252 and 171253.
lographic data in CIF or other electronic format.
27 F. Bigoli, P. Cassoux, P. Deplano, M. L. Mercuri, M. A. Pellinghelli,
G. Pintus, A. Serpe and E. F. Trogu, J. Chem. Soc., Dalton. Trans.,
2000, 4639.
28 (a) J. W. Dawson, T. J. McLennan, W. Robinson, A. Merle,
M. Dartiguenave, Y. Dartiguenave and H. B. Gray, J. Am. Chem.
Soc., 1974, 96, 4428; (b) M. J. Norgett, J. H. Thornley and L. M.
Venanzi, J. Chem. Soc. A, 1967, 540; (c) A. B. P. Lever, Inorganic
Electronic Spectroscopy, Elsevier Publishing Company, Amsterdam,
1968, pp. 347–349.
29 S. Al-Ahmad, B. Boje, J. Magull, T. B. Rauchfuss and Y. Zheng,
J. Am. Chem. Soc., 1995, 117, 1145.
30 B. Chiswell and L. M. Venanzi, J. Chem. Soc. A, 1966, 417 and
references therein.
Acknowledgements
The University of Cagliari is acknowledged for financial
support to this research. Thanks are due to Dr. M. Placidi,
Jobin Yvon S.r.l., for running Raman spectra and Prof. Gladiali,
University of Sassari, for helpful discussion on chirality.
References
1 P. Cassoux and L. Valade, Inorganic Materials, ed. D. W. Bruce
and D. O’Hare, John Wiley & Sons, Chichester, 1996, 2nd edn.;
H. Tanaka, Y. Okano, H. Kobayashi, W. Suzuki and A. Kobayashi,
Science, 2001, 291, 285.
2 A. T. Coomber, D. Beljonne, R. H. Friend, J. K. Brédas,
A. Charlton, N. Robertson, A. E. Underhill, M. Kurmoo and
P. Day, Nature, 1996, 380, 144.
3 U. T. Mueller-Westerhoff, B. Vance and D. I. Yoon, Tetrahedron,
1991, 47, 909.
4 C. S. Winter, C. A. S. Hill and A. E. Underhill, Appl. Phys. Lett.,
1991, 58, 107.
31 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 58;
F. Ugozzoli, Comput. Chem., 1987, 11, 109.
32 A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C.
Burla, G. Polidori and M. Camalli, J. Appl. Crystallogr., 1994, 27,
435.
33 G. M. Sheldrick, SHELXL-97, Program for Crystal Structure
Refinement, University of Göttingen, Göttingen, Germany,
1997.
5 N. Svenstrup and J. Becker, Synthesis, 1995, 215; P. J. Nigrey, Synth.
React. Met.-Org. Chem., 1986, 16, 1351.
6 P. Cassoux, L. Valade, H. Kobayashi, A. Kobayashi, R. H. Clark
and A. E. Underhill, Coord. Chem. Rev., 1991, 110, 115; I. Malfant,
N. Cordente, P. G. Lacroix and C. Lepetit, Chem. Mater., 1991, 10,
4079.
34 H. D. Flack, Acta Crystallogr., Sect. A, 1983, 39, 876.
35 International Tables for X-ray Crystallography, Kynoch Press,
Birmingham, England, 1974, vol. IV, pp. 99–102, 149.
36 M. Nardelli, J. Appl. Crystallogr., 1995, 28, 659.
37 L. Zsolnai and H. Pritzkow, ZORTEP, ORTEP Original Program
Modified for PC, University of Heidelberg, Germany, 1994.
J. Chem. Soc., Dalton Trans., 2002, 1985–1991
1991