5550
B. M. Seletsky et al. / Bioorg. Med. Chem. Lett. 14 (2004) 5547–5550
reversibility assay, albeit with increased susceptibility to
PgP-mediated drug efflux. This inverse relationship was
also observed when the hydroxyl groups were converted
to methyl ethers 29 and 30 or to an acetonide 38, result-
ing in diminished activity in the reversibility assay, and
decreased susceptibility to PgP-mediated drug efflux.
Removal of the C.33-side chain (i.e., 34) led to complete
loss of activity.
References and notes
1. Uemura, D.; Takahashi, K.; Yamamoto, T.; Katayama,
C.; Tanaka, J.; Okumura, Y.; Hirata, Y. J. Am. Chem.
Soc. 1985, 107, 4796–4798.
2. Hirata, Y.; Uemura, D. Pure Appl. Chem. 1986, 58, 701–
710.
3. (a) Fodstad, Ø.; Breistøl, K.; Pettit, G. R.; Shoemaker, R.
H.; Boyd, M. R. J. Exp. Therap. Oncol. 1996, 1, 119–125;
(b) Towle, M. J.; Aalfs, K. K.; Budrow, J. A.; Kishi, Y.;
Littlefield, B. A. Annual Meeting of the American
Association for Cancer Research, Toronto, Ontario,
March 18–22, 1995, 2342.
4. (a) Aicher, T. D.; Buszek, K. R.; Fang, F. G.; Forsyth, C.
J.; Jung, S. H.; Kishi, Y.; Matelich, M. C.; Scola, P. M.;
Spero, D. M.; Yoon, S. K. J. Am. Chem. Soc. 1992, 114,
3162–3164; (b) Aicher, T. D.; Buszek, K. R.; Fang, F. G.;
Forsyth, C. J.; Jung, S. H.; Kishi, Y.; Scola, P. M.
Tetrahedron Lett. 1992, 33, 1549–1552; (c) Buszek, K. R.;
Fang, F. G.; Forsyth, C. J.; Jung, S. H.; Kishi, Y.; Scola,
P. M.; Yoon, S. K. Tetrahedron Lett. 1992, 33, 1553–1556;
(d) Fang, F. G.; Kishi, Y.; Matelich, M. C.; Scola, P. M.
Tetrahedron Lett. 1992, 33, 1557–1560.
Since the C.31 substituent appeared to play a critical
role, we hypothesized that alternative ring systems that
preserve the spatial relationship of this group relative
to the macrolactone ring may stabilize the bioactive con-
formation of the molecule and lead to analogues with
improved biological activity. In the X-ray crystal struc-
ture of norhalichondrin A p-bromophenacyl ester,1 the
C.29–C.33 tetrahydropyran ring adopted a twist boat
conformation that placed the C.31 methyl group in a
pseudoequatorial position. Since a tetrahydrofuran ring
could similarly orient the C.31 methyl group in a pseu-
doequatorial position, we prepared a series of tetra-
hydrofuran derivatives to determine if the biological
activity limitations observed with the tetrahydropyran
analogues could be circumvented.
5. (a) Towle, M. J.; Kishi, Y.; Littlefield, B. A., unpublished
observations, 1992; (b) Kishi, Y.; Fang, F. G.; Forsyth, C.
J.; Scola, P. M.; Yoon, S. K. U.S. Patent 5,436,238.
6. Stamos, D. P.; Sean, S. C.; Kishi, Y. J. Org. Chem. 1997,
62, 7552–7553.
Gratifyingly, tetrahydrofuran 41 exhibited a superior
potency and reversibility profile to that found for the
tetrahydropyran series (cf. 41 and 27–38). Inversion of
stereochemistry at C.31 led to a 150-fold loss of potency
(43 vs 41), confirming the importance of this group in
both the tetrahydropyran and tetrahydrofuran series.
As expected based on conformational arguments, activ-
ity was also critically dependent on the configuration at
C.29 and C.30 of the macrolactone ring (e.g., 48 and 49,
respectively). The trifluoromethyl ketone analogue 45
exhibited an in vitro biological profile similar to 41 sug-
gesting the bioisosteric equivalence of a hydrated tri-
fluoromethyl ketone acting as a formal geminal diol
with a vicinal diol moiety.16 The influence of stereo-
chemistry at C.32 was further investigated. C.34-epi-
meric diols 46 and 47 showed superior activity in the
reversibility assay compared with the corresponding
C.32 diastereomers 41 and 42. From these studies, tetra-
hydrofuran 47 emerged as the most promising analogue
based on intrinsic potency, ability to maintain a CMB,
and susceptibility to PgP-mediated drug efflux.
7. Wang, Y.; Habgood, G. J.; Christ, W. J.; Kishi, Y.;
Littlefield, B. A.; Yu, M. J. Bioorg. Med. Chem. Lett.
2000, 10, 1029–1032.
8. (a) Xie, C.; Nowak, P.; Kishi, Y. Org. Lett. 2002, 4, 4427–
4429; (b) Choi, H.; Nakajima, K.; Demeke, D.; Kang,
F.-A.; Jun, H.-S.; Wan, Z.-K.; Kishi, Y. Org. Lett. 2002,
4, 4435–4438.
9. Stamos, D. P.; Kishi, Y. Tetrahedron Lett. 1996, 37, 8643–
8646.
10. Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc.
1982, 104, 4976–4978.
11. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155–
4156.
12. Nashed, M. A.; Anderson, L. Tetrahedron Lett. 1976,
3503–3506.
13. L-Arabinose derivative 19 was prepared in three steps
from L-arabinose dithioacetal: (a) TBDPSCl, Et3N; (b) I2,
NaHCO3; (c) Ac2O, pyridine.
14. Towle, M. J.; Salvato, K. A.; Budrow, J.; Wels, B. F.;
Aalfs, K. K.; Zheng, W.; Seletsky, B. M.; Palme, M. H.;
Habgood, G. J.; Singer, L. A.; DiPietro, L. V.; Wang, Y.;
Chen, J. J.; Lydon, P. J.; Quincy, D. A.; Kishi, Y.;
Yoshimatsu, K.; Yu, M. J.; Littlefield, B. A. Annual
Meeting of the American Association for Cancer
Research, New Orleans, LA, March 24–28, 2001, 1976.
15. Yang, J.-M.; Goldenberg, S.; Gottesman, M. M.; Hait, W.
N. Cancer Res. 1994, 54, 730–737.
In summary, structurally simplified macrolactone
analogues of HB were identified that retain the
potent cell growth inhibitory activity of the natural
product in vitro, and may represent the minimum phar-
macophore for the halichondrin class of antimitotic
agents.
16. Patel, D. V.; Rielly-Gauvin, K.; Ryono, D. E.; Free, C. A.;
Smith, S. A.; Petrillo, E. W. J. Med. Chem. 1993, 36, 2431–
2447.