10998 J. Am. Chem. Soc., Vol. 122, No. 44, 2000
Aoki et al.
fibrous materials formed from other amphiphiles of phospholipid
derivatives,6 glucosamide bolaamphiphiles,7 amino acid deriva-
tives,8 and others.9 Moreover, Shimizu et al. reported on
precisely controlled microtubes encapsulating a number of
vesicular assemblages inside their aqueous compartment, using
bolaamphiphiles with carboxylic headgroups at both molecular
ends.10 These molecular assemblages are ultimately associated
with natural biological systems.
For the construction of the well-defined molecular as-
semblages mentioned above, hydrogen bonds are regarded as
an essential driving force because their moderate and reversible
nature differs intrinsically from that of covalent bonds. Such
characteristics of hydrogen bonding give rise to specific
functionalities of artificial materials as well as biological
materials. Kato et al.11 and Griffin et al.12 reported on hydrogen-
bonded supramolecular liquid crystals and liquid crystalline
polymers with the goal of their application to optical elements.
In the other cases, the formation of hydrogen-bonded fibrous
nanoscale networks gave rise to the gelation of a variety of
solvents.13 Without such hydrogen bonding, anthracene deriva-
tives,14 steroid derivatives,15 and steroidal and condensed
aromatic rings16 form gels with various kinds of organic
solvents,17 suggesting that intermolecular interactions involving
Figure 1. Azopyridine carboxylic acids (2b, 3a, 3b, 4a, and 4b).
van der Waals interactions among aromatic rings or hydrophobic
cyclic hydrocarbons also play an important role in molecular
assembly.
Knowing that the self-organization of molecular assemblages
possessing highly ordered structures is decisively governed by
the chemical structures of the original low-molecular-weight
molecules, we anticipate that the macroscopic morphological
shapes of the molecular assemblages should be modulated by
the modification of original molecules by external physical or
chemical stimuli such as light, heat, and pH changes. This is
because molecular-level alteration by external stimuli should
be amplified in molecular assemblages at the macroscopic level
during the self-organization process through multiple intermo-
lecular interactions.18 Indeed, several studies have shown that
morphological features of organic tubes (length distribution and
thickness of wall) and of low-molecular-weight gels can be
controlled by varying the preparation conditions such as
concentrations of lipids, solvents, cooling rates, and light.16c,19
Our investigation has been concentrated on the control of the
macroscopic morphology of self-organized materials by external
physical stimuli such as light.
We started by designing simple organic molecules to give
molecular assemblages which might lead to a better understand-
ing of the relationships between monomolecular chemical
structure and macroscopic morphological features. Kato et al.
demonstrated that novel supramolecular liquid crystals are
formed through a pyridyl/carboxyl hydrogen bond when two
kinds of organic molecules possessing either a pyridyl group
as a hydrogen acceptor or a carboxyl group as a hydrogen donor
are mixed.11 Griffin et al. reported that binary mixtures of bola-
form organic compounds bearing either two carboxyl groups
or pyridyl groups at both molecular termini give rise to
supramolecular polymerization through formation of hydrogen
bonds between their carboxyl and pyridyl groups, and that the
resulting hydrogen-bonded materials exhibit rheological proper-
ties similar to those of conventional linear polymers formed
through covalent bonds.12 Taking these facts into consideration,
we designed a novel family of amphoteric azopyridine car-
boxylic acids possessing both a carboxyl group as a hydrogen
donor and a pyridyl group as a hydrogen acceptor at each
molecular terminus, as shown in Figure 1 on the basis of the
(6) (a) Yanagawa, H.; Ogawa, Y.; Furuta, H.; Tsuno, K. J. Am. Chem.
Soc. 1989, 111, 4567. (b) Takeoka, S.; Sakai, H.; Iwai, H.; Ohono, H.;
Tsuchida, E. Polym. Prepr., Jpn. 1989, 38, 568.
(7) (a) Shimizu, T.; Masuda, M. J. Am. Chem. Soc. 1997, 119, 2812. (b)
Kogiso, M.; Hanada, T.; Yase, K.; Shimizu, T. Chem. Commun. 1998, 1791.
(c) Masuda, M.; Hanada, T.; Yase, K.; Shimizu, T. Macromolecules 1998,
31, 9403. (d) Nakazawa, I.; Masuda, M.; Okada, Y.; Hanada, T.; Yase, K.;
Asai, M.; Shimizu, T. Langmuir 1999, 15, 4757.
(8) Imae, T.; Takahashi, Y.; Muramatsu, H. J. Am. Chem. Soc. 1992,
114, 3414.
(9) (a) Menger, F. M.; Lee, S. J. J. Am. Chem. Soc. 1994, 116, 5987. (b)
Imae, T.; Ikeda, Y.; Iida, M.; Koine, N.; Kaizaki, S. Langmuir 1998, 14,
5631.
(10) (a) Shimizu, T.; Kogiso, M.; Masuda, M. Nature 1996, 383, 487.
(b) Kogiso, M.; Ohnishi, S.; Yase, K.; Masuda, M.; Shimizu, T. Langmuir
1998, 14, 4978.
(11) (a) Kato, T.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1989, 111, 8533.
(b) Kato, T.; Fre´chet, J. M. J.; Wilson, P. G.; Saito, T.; Uryu, T.; Fujishima,
A.; Jin, C.; Kaneuchi, F. Chem. Mater. 1993, 5, 1094. (c) Kato, T.; Fre´chet,
J. M. J., Macromol. Symp. 1995, 98, 311. (d) Kihara, H.; Kato, T.; Uryu,
T.; Fre´chet, J. M. J. Chem. Mater. 1996, 8, 961. (e) Kato, T. Struct. Bonding
2000, 96, 95.
(12) (a) Alexander, C.; Jariwala, C. P.; Lee, C.-M.; Griffin, A. C.
Macromol. Symp. 1994, 77, 283. (b) Lee, C.-M.; Jariwala, C. P.; Griffin,
A. C. Polymer 1994, 35, 4550. (c) Lee, C.-M.; Griffin, A. C. Macromol.
Symp. 1997, 117, 281.
(13) (a) Tachibana, T.; Kitazawa, S.; Takeno, H. Bull. Chem. Soc Jpn.
1970, 43, 2418. (b) Terech, P.; Rodriguez, V.; Barnes, J. D.; McKenna, B.
Langmuir 1994, 10, 3406. (c) Amanokura, N.; Yoza, K.; Shinmori, H.;
Shinkai, S.; Reinhoudt, D. N. J. Chem. Soc,. Perkin Trans. 2 1998, 2585.
(d) Aoki, M.; Nakashima, K.; Kawabata, H.; Tsutsui, S.; Shinkai, S. J. Chem.
Soc., Perkin Trans. 2 1993, 347. (e) Hanabusa, K.; Hiratsuka, K.; Kimura,
M.; Shirai, H. Chem. Mater. 1999, 11, 649. (f) Hanabusa, K.; Okui, K.;
Karaki, K.; Kimura, M.; Shirai, H. J. Colloid Interface Sci. 1997, 195, 86.
(g) Hanabusa, K.; Matsumoto, Y.; Miki, T.; Koyama, T.; Shirai, H. J. Chem.
Soc., Chem. Commun. 1994, 1401. (h) Schoonbeek, F. S.; van Esch, J. H.;
Wegewijs, B; Rep, D. B. A.; de Haas, M. P.; Klapwijk, T. M.; Kellogg, R.
M.; Feringa, B. L. Angew. Chem., Int. Ed. 1999, 38, 1393. (i) Terech, P.;
Allegraud, J. J.; Garner, C. M. Langmuir 1998, 14, 3991.
(14) (a) Clavier, G. M.; Brugger, J.-F.; Bouas-Laurent, H.; Pozzo, J.-L.
J. Chem. Soc,. Perkin Trans. 2 1998, 2527. (b) Pozzo, J.-L.; Clavier, G.
M.; Colomes, M.; Bouas-Laurent, H. Tetrahedron 1997, 53, 6377. (c)
Terech, P.; Bouas-Laurent, H.; Desvergne, J. P. J. Colloid Interface Sci.
1995, 174, 258. (d) Desvergne, J.-P.; Fages, F.; Bouas-Laurent, H.; Marsau,
P. Pure Appl. Chem. 1992, 64, 1231.
(15) (a) Bujanowsky, V. J.; Katsoulis, D. E.; Ziemelis, M. J. Mater.
Chem. 1994, 4, 1181. (b) Terech, P.; Berthet, C. J. Phys. Chem. 1988, 92,
4269. (c) Terech, P. J. Colloid Interface Sci. 1985, 107, 244. (d) Terech, P.
Mol. Cryst. Liq. Cryst. 1989, 166, 29.
(16) (a) Mukkamala, R.; Weiss, R. G. Langmuir 1996, 12, 1474. (b)
Terech, P.; Ostuni, E.; Weiss, R. G. J. Phys. Chem. 1996, 100, 3759. (c)
Geiger, C.; Stanescu, M.; Chen, L.; Whitten, D. G. Langmuir 1999, 15,
2241.
(17) Terech, P.; Weiss, R. G. Chem. ReV. 1997, 97, 3133. References to
the other gelators are given therein.
(18) Ichimura, K. Chem. ReV. 2000, 100, 1847.
(19) (a) Thomas, B. N.; Safinya, C. R.; Plano, R. J.; Clark, N. A. Science
1995, 267, 1635. (b) Spector, M. S.; Selinger, J. V.; Singh, A.; Rodrigues,
J. M.; Price, R. R.; Schnur, J. M. Langmuir 1998, 14, 3493. (c) Spector,
M. S.; Price, R. R.; Schnur, J. M. AdV. Mater. 1999, 11, 337.