P. Renner et al. / Journal of Organometallic Chemistry 591 (1999) 71–77
77
4. Supplememtary material
pentane). Over a period of 3 h, the reaction mixture
was warmed to r.t. and the LiCl which precipitated
during the course of this process was removed by
centrifugation. The centrifugate was concentrated to 5
ml and stored at r.t. for several days. During this
period compound 7 crystallized as a colourless solid,
which was isolated by decanting the supernatant solu-
tion and drying in vacuo. Yield: 302 mg (76%). M.p.:
85°C (dec.). 1H-NMR (C6D6, 295 K): l −0.38 (s,
HC(Si…)3), 0.37 (s, Si(CH3)2), 0.97 (d, J=2.1 Hz,
ZrC(CH3)3), 6.85–7.09 (m, 2-FC6H4). {1H}13C-NMR
(C6D6, 295 K): l 4.3 (Si(CH3)2), 8.5 (HC(Si…)3), 26.8
Crystallographic data for the structural analysis have
been deposited with the Cambridge Crystallographic
Database Centre, CCDC no. 130257 for compound 3
and 130258 for compound 4. Copies of this information
may be obtained free of charge from: The Director,
CCDC, 12 Union Road, Cambridge CB2 1EZ, UK
[Fax: +44-1223-336-033 or e-mail: deposit@ccdc.cam.
ac.uk or http://www.ccdc.cam.ac.uk].
2
References
(C(CH3)3), 67.2 (q, JFC=3.0 Hz, ZrC(CH3)3), 115.2
2
3
(d, JFC=21.7 Hz, C3 of 2-FC6H4), 120.0 (d, JFC=7.9
Hz, C4 of 2-FC6H4), 122.0, 125.9 (C5,6 of 2-FC6H4),
140.6 (d, 2JFC=13.8 Hz, C1 of 2-FC6H4), 158.7 (d,
[1] (a) L.H. Gade, N. Mahr, J. Chem. Soc. Dalton Trans. (1993) 489.
(b) L.H. Gade, C. Becker, J.W. Lauher, Inorg. Chem. 32 (1993)
2308. (c) H. Memmler, L.H. Gade, J.W. Lauher, Inorg. Chem. 33
(1994) 3064. (d) M. Schubart, B. Findeis, L.H. Gade, W.-S. Li,
M. McPartlin, Chem. Ber. 128 (1995) 329.
1JFC=229.2 Hz, C2 of 2-FC6H4). {1H}19F-NMR
.
(C6D6, 295 K): l −123.5. {1H}29Si-NMR (C6D6, 295
K): l 3.2. C29H40F3N3Si3Zr (663.13): Anal. Calc. C,
52.53; H, 6.08; N, 6.34. Found C, 52.31; H, 5.99; N,
6.30.
[2] S. Friedrich, L.H. Gade, A.J. Edwards, M. McPartlin, Chem. Ber.
126 (1993) 1797.
[3] (a) S. Friedrich, H. Memmler, L.H. Gade, W.-S. Li, M. Mc-
Partlin, Angew. Chem. Int. Ed. Engl. 33 (1994) 676. (b) B. Findeis,
M. Schubart, C. Platzek, L.H. Gade, I. Scowen, M. McPartlin,
Chem. Commun. (Cambridge) (1996) 219. (c) S. Friedrich, H.
Memmler, L.H. Gade, W.-S. Li, I. Scowen, M. McPartlin, C.E.
Housecroft, Inorg. Chem. 35 (1996) 2433. (d) B. Findeis, L.H.
Gade, I.J. Scowen, M. McPartlin, Inorg. Chem. 36 (1997) 960. (e)
B. Findeis, M. Contel, L.H. Gade, M. Laguna, M.C. Gimeno, I.J.
Scowen, M. McPartlin, Inorg. Chem. 36 (1997) 2386. (f) G.
Jansen, M. Schubart, B. Findeis, L.H. Gade, I.J. Scowen, M.
McPartlin, J. Am. Chem. Soc. 120 (1998) 7239. (g) M. Schubart,
G. Mitchell, L.H. Gade, T. Kottke, I.J. Scowen, M. McPartlin,
Chem. Commun. (Cambridge) (1999) 233.
[4] (a) H. Memmler, U. Kauper, L.H. Gade, I. Scowen, M. Mc-
Partlin, Chem. Commun. (Cambridge) (1996) 1751. (b) A.
Schneider, L.H. Gade, M. Breuning, G. Bringmann, I.J. Scowen,
M. McPartlin, Organometallics 17 (1998) 1643. (c) S. Fabre, B.
Findeis, D.J.M. Tro¨sch, L.H. Gade, I.J. Scowen, M. McPartlin,
Chem. Commun. (Cambridge) (1999) 577.
[5] B. Findeis, M. Schubart, L.H. Gade, I. Scowen, M. McPartlin, J.
Chem. Soc. Dalton Trans. (1996) 125.
[6] H. Memmler, K. Walsh, L.H. Gade, J.W. Lauher, Inorg. Chem.
34 (1995) 4062.
[7] M.A. Beswick, D.S. Wright, in: G. Wilkinson, E.W. Abel, F.G.A.
Stone (Eds.), Comprehensive Organometallic Chemistry, vol. 1,
Pergamon, Oxford, 1995, p. 1.
[8] H. Ko¨ster, D. Thoennes, E. Weiss, J. Organomet. Chem. 160
(1978) 1.
3.6. X-ray crystallographic studies of 3 and 4
Data were collected using an Enraf–Nonius CAD4
diffractometer at a temperature of 153(2) K (3) and
193(2) K (4) with oil-coated shock-cooled crystals [13]
mounted on the top of a glass pin under nitrogen.
Crystal data and experimental details for the crystals of
3 and 4 are given in Table 3. All data for the two
structures were corrected for absorption (C-scans).
Structure 3 was solved by direct methods, structure 4
by Patterson methods (SHELXS-97) and both were
refined on F2 (SHELXL-97) [14]. In the case of 3, disor-
der of all diethylether molecules was found. In the final
cycles of refinement, all non-hydrogen atoms of 3 and 4
were assigned anisotropic displacement parameters. Hy-
drogen atoms were included in idealized positions rid-
ing on the parent atoms and were assigned isotropic
displacement parameters of 1.2Ueq (ꢁCH, CH, CH2)
and 1.5Ueq (CH3) of the parent atom.
The structure of the chlorozirconium–lithum chlo-
[9] B. Schubert, E. Weiss, Angew. Chem. Int. Ed. Engl. 22 (1983) 496.
[10] D. Barr, W. Clegg, R.E. Mulvey, R. Snaith, J. Chem. Soc. Chem.
Commun. (1984) 79.
[11] D. Seebach, Angew. Chem. Int. Ed. Engl. 27 (1988) 1624.
[12] R. Amstutz, W.B. Schweizer, D. Seebach, J. Dunitz, Helv. Chim.
Acta 64 (1981) 2617.
[13] T. Kottke, D. Stalke, J. Appl. Crystallogr. 26 (1993) 615.
[14] (a) G.M. Sheldrick, Acta Crystallogr., Sect. A 46 (1990) 467. (b)
G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refin-
ement, Universita¨t Go¨ttingen, 1997.
ride
complex
[HC{SiMe2N(4-CH3C6H4)}3Zr{Cl4-
(LiꢀOEt2)3}] (3) was refined (SHELXL-97) by application
of a rigid-bond restraint to Uij values (DELU) with low
ESDs and assumption of ‘similar’ Uij values (SIMU)
with large ESDs due to the high disorder of all four
diethylether molecules. For one carbon atom (C60)
approximation of isotropic behaviour of its Uij values
(ISOR) with large ESDs was used.