10.1002/cmdc.201900286
ChemMedChem
FULL PAPER
optimization in early drug discovery. It suggests that experimental
efforts in (SOSA-based) optimization of drug molecules towards
desired activity profiles can be markedly reduced by automated
analogue design and scoring.
Aided. Mol. Des. 2013, 27, 15–29.
[13]
H. A. Carlson, R. D. Smith, K. L. Damm-Ganamet, J. A. Stuckey, A.
Ahmed, M. A. Convery, D. O. Somers, M. Kranz, P. A. Elkins, G.
Cui, et al., J. Chem. Inf. Model. 2016, 56, 1063–1077.
C. Ruggeri, N. Drinkwater, K. K. Sivaraman, R. S. Bamert, S.
McGowan, A. Paiardini, PLoS One 2015, 10, e0138957.
Z. Gaieb, S. Liu, S. Gathiaka, M. Chiu, H. Yang, C. Shao, V. A.
Feher, W. P. Walters, B. Kuhn, M. G. Rudolph, et al., J. Comput.
Aided. Mol. Des. 2018, 32, 1–20.
[14]
[15]
Acknowledgements
The authors thank Dr. Francesca Grisoni and Dr. Franca Klingler
for scientific advice and technical support. The free use of the
BioSolveIT chemoinformatics software suite as part of the
scientific challenge is gratefully acknowledged. Molecular
graphics and analyses performed with UCSF Chimera, developed
by the Resource for Biocomputing, Visualization, and Informatics
at the University of California, San Francisco, with support from
NIH P41-GM103311.
[16]
[17]
P. da Silva Figueiredo Celestino Gomes, F. Da Silva, G. Bret, D.
Rognan, J. Comput. Aided. Mol. Des. 2018, 32, 75–87.
M. Su, Q. Yang, Y. Du, G. Feng, Z. Liu, Y. Li, R. Wang, J. Chem.
Inf. Model. 2019, 59, 895–913.
[18]
[19]
J. Weber, M. Rupp, E. Proschak, Mol. Inform. 2012, 31, 631–633.
M. Rarey, B. Kramer, T. Lengauer, G. Klebe, J. Mol. Biol. 1996, 261,
470–89.
[20]
[21]
[22]
J. C. dos Santos, A. Bernardes, L. Giampietro, A. Ammazzalorso, B.
De Filippis, R. Amoroso, I. Polikarpov, J. Struct. Biol. 2015, 191,
332–340.
Keywords: automation • peroxisome proliferator-activated
receptor • nuclear receptor • virtual combinatorial library
A. P. Bento, A. Gaulton, A. Hersey, L. J. Bellis, J. Chambers, M.
Davies, F. A. Krüger, Y. Light, L. Mak, S. McGlinchey, et al., Nucleic
Acids Res. 2014, 42, D1083–D1090.
Associated Content
J. L. Durant, B. A. Leland, D. R. Henry, J. G. Nourse, J. Chem. Inf.
Comput. Sci. 2002, 42, 1273–1280.
Supporting Information available. The Supporting Information
contains Supplementary Tables S1-S5, computational methods
and model validation, synthetic procedures and analytical
characterization of 2-4 and their precursors, data on evaluation of
E/Z-isomerism, as well as methods for in vitro characterization.
[23]
[24]
H. L. Morgan, J. Chem. Doc. 1965, 5, 107–113.
R. E. Carhart, D. H. Smith, R. Venkataraghavan, J. Chem. Inf.
Model. 1985, 25, 64–73.
[25]
[26]
[27]
G. F. Field, J. R. Vermeulen, W. J. Zally, Cycloalkylthiazole
Derivatives, 1990, EP0355353A2.
Compound datasets used in this study and predicted binding
F. J. Brown, Y. K. Yee, L. A. Cronk, K. C. Hebbel, R. D. Krell, D. W.
Snyder, J. Med. Chem. 1990, 33, 1771–1781.
poses for HYDE assessment are provided as sdf or csv files.
S. Schierle, C. Flauaus, P. Heitel, S. Willems, J. Schmidt, A. Kaiser,
L. Weizel, T. Goebel, A. S. Kahnt, G. Geisslinger, et al., J. Med.
Chem. 2018, 61, 5758–5764.
References:
[1]
[2]
[3]
G. Schneider, Nat. Rev. Drug Discov. 2017, 17, 97–113.
C. G. Wermuth, J. Med. Chem. 2004, 47, 1303–14.
T. Langer, C. G. Wermuth, in Polypharmacology Drug Discov., John
Wiley & Sons, Inc., Hoboken, NJ, USA, 2012, pp. 227–243.
L. Michalik, J. Auwerx, J. P. Berger, V. K. Chatterjee, C. K. Glass, F.
J. Gonzalez, P. A. Grimaldi, T. Kadowaki, M. A. Lazar, S. O’Rahilly,
et al., Pharmacol. Rev. 2006, 58, 726–741.
[28]
E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M.
Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 2004, 25,
1605–1612.
[4]
[5]
[6]
C. Lamers, M. Schubert-Zsilavecz, D. Merk, Expert Opin. Ther. Pat.
2012, 22, 803–841.
E. Proschak, P. Heitel, L. Kalinowsky, D. Merk, J. Med. Chem.
2017, 60, 5235–5266.
[7]
[8]
M. O’Donnell, Ann. N. Y. Acad. Sci. 1991, 629, 413–5.
M. O’Donnell, H. J. Crowley, B. Yaremko, N. O’Neill, A. F. Welton, J.
Pharmacol. Exp. Ther. 1991, 259, 751–8.
[9]
J. Schmidt, M. Rotter, T. Weiser, S. Wittmann, L. Weizel, A. Kaiser,
J. Heering, T. Goebel, C. Angioni, M. Wurglics, et al., J. Med. Chem.
2017, 60, 7703–7724.
[10]
[11]
[12]
D. Flesch, S.-Y. Cheung, J. Schmidt, M. Gabler, P. Heitel, J. S.
Kramer, A. Kaiser, M. Hartmann, M. Lindner, K. Lüddens-Dämgen,
et al., J. Med. Chem. 2017, 60, 7199–7205.
H. M. Sarau, R. S. Ames, J. Chambers, C. Ellis, N. Elshourbagy, J.
J. Foley, D. B. Schmidt, R. M. Muccitelli, O. Jenkins, P. R. Murdock,
et al., Mol. Pharmacol. 1999, 56, 657–63.
N. Schneider, G. Lange, S. Hindle, R. Klein, M. Rarey, J. Comput.
5
This article is protected by copyright. All rights reserved.